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Simplified NNCS

‘ )
‘( \ < The controller is a feedforward neural

network.
" ‘ /<> ® The neural network takes the system
O states as the mput at the time # = 10 for
1 =0, 1, ...
X 1 ® The neural network produces the value
for the control input u# which will be used

in the current step, 1.e., t € [i0, (i + 1)0].

® The response time of the neural network
dx controller 1s 1gnored.

- _f(xa l/t)

dt . )




Reachability Analysis of NNCS

e NNCS are still state feedback systems, and we may still use the main reachability
analysis framework for NNCS.

e The plant of an NNCS 1s still defined by an ODE.
e The feedback law 1s not defined by a simple expression but a neural network.

e Assume that all of the existing techniques can still be well used on the system
components except the neural network.

e We need at least a new approach to compute the reachable set under a neural
network mapping.



Formal Definition of an Execution

e We assume that the plant 1s defined by
the ODE x = f(x, u).

 The mnput-output mapping of the neural z(t)
network controller 1s denoted by «.

. — § &= f(x,v2)

e In the i™ control step, the control input :Z _i(;’(g;))); Vg = n(x(g(sj))f §
u is updated as v; = k(x(i5,.)). Then the S E § §
system evolves according to the ODE 2 § & = f(z,0v3)
x = fx, v). Z’j _:J; ((Z ( ;’1))) vy = K(2(30.));

e Regardless of the possible disturbances : : :
from the environment, NNCS are 0 Oc 20, 30 40,

deterministic systems.



Computing Neural Network Output Ranges



Input-Output Mapping of a Neural Network

0 k—1 k K

Q Input: a = k('a)

Output of the k-th layer: a, = (W, a ,_; + Z)k)



Activation Functions

|dentity RelLU
o(x) =Xx o(x) = max{0,x}
Sigmoid Gaussian
|
_ — 2
) = Tres ——— SN o=
Tanh Threshold
e.X _ e—x r 17 7 Z O
o) = e+ e~ o) = <\ 0, = <U




Existing Techniques for Computing NN Outputs

Input Set . . Output Set

—><;> - GED c;>—» E)
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~ Constant bounds. [Huang et al. 2017], [Katz et al. 2017], [Dutta et al. 2018].
- Polynomial bounds. [Zhang et al. 2018], [Wang et al. 2018], [Weng et al. 2018].
~ Geometric objects. [Gehr et al., 2018], [Singh et al., 2019], [Tran et al. 2020].



To compute NNCS reachable sets, 1s 1t sufficient to just
add a method of computing neural network outputs?



Attempt: Sherlock + Flow*

r = v
v = —x+4 0.1sin(6)
h = w
w = u

2(0) € [0.6,0.61],v(0) € [—0.7, —0.69],
A(0) € [—0.4, —0.39], w(0) € [0.59, 0.6]
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Neural network output (control input) ranges are computed
by Sherlock [Dutta et al. 2018]. Reachable sets are
computed by Flow™.



Facts

e The ODEs are well handled by Flow™.

e Sherlock computes the exact interval range of the control input in each control step.

e In every control step, Sherlock computes the output range of the controller regarding

to the current state set, and Flow™ computes the reachable set under the updated ODE
model.

e (Overestimation still accumulates heavily and the reachable set computation for NNCS
fails.

Where is the overestimation from?



Investigating NNCS Flowmap

xX(1) >O .
= N G D€ Xo) | [
U = (k@0 G = 1D8)) [ x5 € X} |.... :
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e We use @y to denote the flowmap function of an NNCS.
o Then the reachable setatr = (j — 1)0, 1s Xi_| = Pn(xg, (J — 1)0,,0).
o The control input applied in the j”* step t € [( Jj—1)o,.,jo.] 1s Vi) = K(pn(xp, (J — 1)0,,0)).

e Hence, v; 1s uniquely determined by the 1nitial state via the composite mapping k(@ ( -, (J — 1)0,,0)).



Main Issue in the Previous Solution
T he dependency from X, to

v 1 18 lost due to the
o 1nterval overapproximation.
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Dependency: Initial state — Input —
ODE — reachable state — Input —
ODE — reachable state — ...




How can we track the dependency 1n a tflowmap function?



Our Solutions

Polynomial Regression (ReLU):

[HSCC’19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan.

Reachability Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Inference.
In Hybrid Systems: Computation and Control (HSCC), pp. 157-168, 2019.

End-to-End Bernstein Approximation (Continuous):

[TECS’19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Q1 Zhu.
ReachNN: Reachability Analysis of Neural-Network Controlled Systems.
In ACM Transactions on Embedded Computing Systems (TECS), volume 18, number 5s, pp. 106:1-106:22. ACM, 2019.

Layer-by-Layer Propagation using Polynomial Arithmetic (Continuous):

|[ATVA’22] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu.
POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems
Available at arxiv.org/abs/2106.13867.



http://arxiv.org/abs/2106.13867

Polynomial Regression

Main idea:

e We compute a polynomial regression p based on a finite set of random samples 1n
Aj-1
e Then p can be viewed as a polynomial approximation of the neural network «.

e Next, we compute an interval / which contains the difference (x) = x(x) — p(x) for all
xe X._..
j—1

e Hence, p + [ 1s a functional overapproximation of «.



Step 1: Computing a Polynomial Regression

u = K(x) g

(Generate a finite set of random
samples 1n the set X;_;.

Compute their images under the neural
network mapping x( - ).

Compute a polynomial regression p
which 1s as close as possible to the
samples.

Then p will be used as an .
approximation of x. 5 X :




Step 2: Remainder Evaluation

e Purpose: We want to find a remainder
interval | —e¢, €] which 1s guaranteed to
contain the approximation error of p,
1.e., k(x) — p(x) < eforall x & Xi_1-

o Information we know: The range X;_,

of the samples, the polynomial
approximation p.

 Information we “do not know”: ; ;
Although k can be explicitly expressed, >
the form is often too complicated. | X |




Step 2.1: Computing Piecewise Linear Polynomials

o We adaptively choose a subset of X;_

and compute a linear polynomial over
it.

e The error between a linear polynomial
and the polynomial regression 1s
controlled to be less than a threshold.

e Then, the error between the piecewise
linear polynomials to the polynomial
regression 1s defined as the maximum
erTor €.

u = k(x)

A

_ p(x)

) \ v

Maximum difference ¢,



Step 2.2: Computing the Error between the PWL model and «

u = Kk(x) .
Combined MILP Model: Given the constraints ¥n(x, y, v) for a 4 :

neural network N and constraints ¥y (x, z, T) for a PWL model L,
the error interval is estimated by setting up a two MILPs as follows:

max(min) z -y
s.t. Yn(X,y,V) (*MILP encoding for NN¥)
¥ (x,z,1) (*MILP encoding for PWLY)

x € D, (v,1) € {0, 1}IVI+1]

e x 1s the vector of variables to denote the NN 1nput.

e vy i1sthe vector of variables to denote the NN output.

e z1s the vector of variables to denote the output of >
the PWL model. 5 )¢ 5 X

e We want to find the maximum and minimum
differences between z and y.



Background: MILP Encoding of ReLLU NN

—1 k Activation function:
y=x1fx > 0, y = 0 otherwise.

MILP Encoding: y > x

y < x+ My
Output of the k-th layer: x; ; = o(W, ; x_y; + by ;) y >0
y < M(1 —v)

X, =W+ b ), UWo o x_,+b,; 20,

X =0, otherwise. v € {0,1}, M is a very large number.



Error between x and p

u = K(x) g

A

Difference between p and the PWL model: ¢,

Difterence between the PWL model and k: &,

Difference between p and x can be conservatively
computed by the triangle inequality: ¢ = ¢, + &,.




Revisit to the Case Study

r = v
v = —x+4 0.1sin(0)
h = w
w = u

2(0) € [0.6,0.61],v(0) € [—0.7, —0.69],
A(0) € [—0.4, —0.39], w(0) € [0.59, 0.6]

Using polynomial
regression

™
x
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. Sherlock + Flow*
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More Experiments

# Benchmark ODE NN
; S ity sl # |Var | N | 7 |[k| N init w
X1 =X2,X2 =UxX5 —x1+w —
3 [ fi= 0GP 5 =W w0l L] 2 |30 ]02]5] 56 [0.5,0.9]° 107"
D 2 | 2 [ 50 [02]6]156 [0.7,0.9] X [0.42,0.58] +1073
4 | A1 = +05x2,% = x3 + W, X3 = u 3] 2 [100[01]5] 56 [0.8,0.9] X [0.4, 0.5] +102
5 | %1 = —xrtag—xatw, oy = X (x3+1)—xg, X3 = 4] 3 [ 50 [02]6]156 [0.35,0.45] X [0.25,0.35] x [0.35, 0.45] +1072
B e B 5 3 |50 |02]6]156 [0.3,0.4] X [0.3,0.4] X [0.4, —0.3] +1072
Py E 6 | 3 |50 [02]5] 106 [0.35,0.4] x [-0.35, —0.3] X [0.35, 0.4] +1073
8 | %1 = xm = ~9.8x3 + 1.6x] + xixj, %5 = 7 1 3 |20 [05]2]500 [0.35, 0.45] X [0.45, 0.55] X [0.25, 0.35] +102
. ol Lt R T 8 | 4 | 25 |02]|5] 106 [0.5,0.6]* +1074
10 2 ;x;;:js(:"sgfc;z+=.le:i(n)gc;))fié; :tfxzuz o | 4 [ 20| 1 [3]300] [0.6,0.7] X [-0.7,—0.6] X [-0.4, —0.3] X [0.5,0.6] | £1073
U +w 10| 4 [ 50 [02]1]500][9.59.55] x[-4.5,—4.45] X [2.1,2.11] X [1.5,1.51] | £10~%
T Powt® | Ps(%) | Pr®) |11 () | Le
1 4 0.02 2 0.66 2.3 14 31 X 31
2 5 0.02 2 0.2 1.4 42 54 X 31
3 4 0.02 2 1.89e-2 0.9 11 36 X 7
4 5 0.02 2 3.7e-2 4.2 62.6 30.2 X 76
5 4 0.02 2 6.8e-5 1.2 44.7 50.6 X 4
6 4 0.02 2 2.7e-2 1.7 12.0 82.7 X 6
7 5 0.05 2 1.2e-2 0.3 93 5 X 538
3 4 0.02 2 6e-2 7 13.3 75.3 X 156
9 4 0.1 2 6.8e-2 2.0 30 16.1 X 36
10 30 0.01 2 0.02 0.1 0.85 98.3 X 16
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Pros and Cons

® Pros:

> Low overestimation accumulation: It 1s a functional overapproximation method for the
NNCS flowmaps.

© Good average efficiency: Only need to solve an MILP problem.
> Allows to consider uncertainties: Noises 1n sensing and actuating.

e Cons:
> The activation functions have to be RelLU.

~ Very low efficiency in the worst case: Too many pieces in the PWL model, MILP problems
are sometimes hard to solve.



End-to-End Bernstein Approximation

Main idea:

e We compute a (Multivariate) Bernstein polynomial p, for the neural network « over
the domain X;_;.

e Next, we compute an interval / which contains the difference €(x) = x(x) — pp(x) for
allx € X;_;.

e Then p + [ 1s a functional overapproximation of «.

e The main 1dea 1s very similar to the previous method, but we do not need an
intermediate approximation for the error bound evaluation.



Background: Univariate Bernstein Polynomial

Given a continuous function f(x) over the domain

x € |0,1], its degree n Bernstein interpolation can
be computed as

p(x) = aobo,n(x) + alblan(x) + o0 + anbn’n(x)

such that a, = f(v/n). The monomials b, ,(x) are
called Bernstein basis.

Advantages:
e The best polynomial approximation.

e The error | f(x) — p(x)| converges to 0 when
n — 090.

¢ The size of p(x) 1s linear 1n n.

-0.44

-0.8-

0.8-

0.4-

[Wikipedia: Bernstein polynomial]



Examples of Bernstein Basis

Order 1:  byp(x) =1,

Order2: bpi(z)=1—=z, bii(z) =z

Order3: boz(z) = (1 —x)?, bio(x) = 22(1 — x), boo(z) = x°

Order4: bos(z)=(1—x)°, by 3(z) = 3z(1 — z)?, bos(z) = 32°(1 — z), b3 3(z) = x°

[Wikipedia: Bernstein polynomial]

Bernstein polynomials of different orders use different bases.



Background: Multivariate Bernstein Polynomial

Definition 3.2 (Bernstein Polynomials). Letd = (d1, - ,dm) €
N™ and f be a function of x = (x1.--- ,x,) over I = |0, 1]™. The
polynomials

multivariate Bernstein
basis

are called the Bernstein polynomials of f under the degree d.

¢ The domain [0,1]" can be shifted to any m-dimensional box.

e The degree of the polynomial isd; +d, + - + d,,..

m
, There are totally H d; coefficients need to be computed.
j=1



Approximating a Neural Network

e nn
bernstein_poly

.r_ 4
i~ 3

le-12—-4

e A Bernstein polynomial can be directly
computed for k¥ over a given input

range.

e Since Bernstein approximation only il S i el ey

) o ) network
requires the original function to be

continuous, we may handle most of the o e
activation functions. §58" o f e
= I, B
. ‘M ""T:T‘T".'T:v ‘ Il _3.'77525 + =3.750
e We often do not need high-degree s [

Bernstein polynomaials.

(b) Approximation for sigmoid neu-(c) Approximation for tanh neural
ral network network



Error Bound Evaluation using Lipschitz Constant

Lipschitz continuity:
|k(Cxp) — k()| < Lllx; — x|
u = Kk(x) ; The error bound is proportional to the Lipschitz
¢ 5 5 constant which is often conservatively estimated.

LEMMA 3.7. [28] Assume f is a Lipschitz continuous function of
x = (x1.:++ ,xm) overI = [0,1]™ with a Lipschitz constant L. Let
d=(d1, - ,dm) € N and By 4 be the Bernstein polynomials of f
under the degree d. Then we have

1
2

[ m \
HBf,d(x) _ f(x)H < IE“ \Z(Udj)/ . Vxel (8)
j=1

[28] George G Lorentz. 2013. Bernstein polynomials. American Mathematical Soc.



Error Bound Evaluation using Samples

u = k(x) 5

A

m

§ 2
; ]
pp(x) £ = £ (u] J) + max ||pg(s) — x(s)||

n;: number ot subdivisions in the j-th dimension.

s. a sample.

)(j_l g [lla ul] X X [lma um]




Experiments

. NN Controller ReachNN Sherlock|[15] Verisig
Act layers | n d ) 3 ifReach time ifReach | time ifReach time

ReLU 3 20 1 0.001 | 0.0009995 Yes(35) 3184 Yes(35) | 41 - L
1 sigmoid 3 20 (3,3 0.001 | 0.0077157 Yes(35) 779 - - Unknown(22) -
tanh 3 20 33 0.005 | 0.0117355 | Unknown(35) - = — | Unknown(22) | -
ReLU+tanh 3 20 3, 3] 0.01 0.0150897 Yes(35) 589 - - - -
ReLU 3 20 By 0.01 | 0.0090560 Yes(9) 128 Yes(9) 3 = .
. sigmoid 3 20 33 0.01 | 0.0200472 Yes(9) 280 — - | Unknown(7) i
tanh 3 20 3,3 0.01 | 0.0194142 | Unknown(7) - - - Unknown(7) -~
ReLU+tanh 3 20 3, 3] 0.001 | 0.0214964 Yes(9) 543 - - - -
ReLU 3 20 (1.1 0.01 0.0205432 Yes(60) 982 Yes(60) 139 - -
3 sigmoid 3 20 13 0.005 | 0.0060632 Yes(60) 1467 _ - Yes(60) 27
tanh 3 20 3, 3] 0.01 | 0.0072984 Yes(60) 1481 — = Yes(60) 26
ReLU+tanh 3 20 3, 3] 0.01 | 0.0230050 | Unknown(60) - E - - -
ReLU 3 20 | [1,1,1] | 0.005 | 0.0048965 Yes(5) 396 Yes(5) | 19 - =
1 sigmoid 3 20 (2, 2.2 0.01 0.0096400 Yes(10) 253 — = Yes(10) 7
tanh 3 20 | [2,2,2] | 001 | 0.0095897 Yes(10) 244 B = Yes(10) 7
ReLU+sigmoid 3 20 2.2 2 0.01 0.0096322 Yes(5) 108 — — - -
ReLU 4 100 111 0.004 | 0.0039809 Yes(10) 5487 Yes(10) 12 - -
. sigmoid 4 100 2.2 2 0.004 | 0.0039269 No(10) 8842 — — Unknown(10) —
tanh 4 100 2. 2.2 0.004 | 0.0038905 | Unknown(10) 7051 - - Unknown(10) -
ReLU+tanh 4 100 2.2 2 0.04 0.0039028 | Unknown(10) 7369 — — — —
ReLU 4 20 (1oL 11 0.001 | 0.0096789 Yes(10) 7842 Yes(10) 33 - -
; sigmoid 4 20 | [1,1,1,1] | 0.001 | 0.0082784 No(7) 32499 - . Yes(10) 34
tanh 4 20 (L1 1 0.001 | 0.0156596 No(7) 3683 — — Yes(10) 35
ReLU+tanh 4 20 (1,1, 1, 1] 0.001 | 0.0091648 Yes(10) 10032 - - - -




Pros and Cons (Comparing to the first method)

® Pros:
~ Generality: Works on all continuous activation functions.
~ Stable time cost: Does not require to solve optimization problems.
~ The polynomial computation does not require to go though the neural network.

e Cons:

~ Very low efficiency in the worst case: The computation cost of a Bernstein polynomial 1s
exponential in the number of variables. The number of samples 1n the remainder estimation 1s
also exponential in the number of variables.



Layer-by-Layer Propagation using Polynomial Arithmetic

Main idea:

o The functional overapproximation p + / for x over X;_; 1s computed in a layer-by-layer
propagation manner using an extension of Taylor model arithmetic.

e We use univariate Bernstein polynomial to approximate a non-differentiable activation
function, and use both univariate Taylor and Bernstein polynomials to approximate
differentiable activation functions.

e Taylor model remainders can also be represented symbolically under linear mappings
to reduce the error accumulation.



Main Difference from the Previous Methods

' % oo () — Ui =plaxp)+))+1

Sherlock, ReachNN

POLAR Computed by

. layer-by-layer
. propagation
° L) O ﬁ U]_l — pr(xo) _I_ Ir




Advantages

e There 1s no intermediate end-to-end overapproximation for the neural network. Notice
that the si1ze of this overapproximation may be exponential in the number of the
neural network nputs.

e All of the Taylor models computed in the layer-by-layer propagation are only over the
variable(s) x,, and their sizes are independent from the size of the neural network.

e For each neuron, we only need to compute one Taylor model.

e All of the Taylor and Bernstein polynomials are univariate, since the activation
functions are univariate.



Main Algorithm

weights .
J bias b We compute a univariate
pl(xo) + / | —> polynomial approximation p (x)
l activation for o(x) over the range of x.
function

Dr(xg) + 15

x =wi(pi(xg) + 1) + wy(pr(xg) + 1) + b



Remainder Evaluation

o(x) A

pg(X) + £

Ps

P

()




Example

0.329 4+ 0.171x; — 0.171x, + 0.015x% + 0.0152x2 — 0.03x,x, + [—0.066,0.066]

A

—1

0.654 + 0.315x; + 0.079x, — 0.049x? — 0.003x; — 0.025xx, + [—0.088,0.088]

0.0378x, — 0.014x;

0) 0.615 + 0.053x,
0.5 i —0.003x — 0.003x,x, + [-0.038,0.038]



Taylor vs. Bernstein

e A Bernstein approximation is often better than the Taylor approximation of the same
order.

e The remainder evaluation for a Bernstein polynomial 1s also more accurate than that
for a Taylor polynomial of the same order.

e However, the Taylor model composition used for each neuron 1s sitmplified by
truncating the higher-order terms, and it could make a Bernstein approximation worse
than a Taylor approximation.

e Hence, for a differentiable activation function, we compute both Taylor and Bernstein
overapproximations, and choose the more accurate one after composing them with the
input Taylor model.



Case Study 1: Adaptive Cruise Control

2

fblead — Vlead ’ijlead — Ylead ’.Ylead — _2'7lead = 2a'lea,cl — UVionds -
L] Shn . St L s 2 — e | e— 1 1 1
Lego = Vego; Vego = Yego) Yego = —27690 + 2CLego _ ’U,’Uego, go_ lead
ACC

30.2

= et NN controller size: 20 X 20 X 20 (tanh)
30
> 29.9
29.8 a-f-CROWN + Flow™: -
29.7 o
59 6 Verisig 2.0: 33445
| 24 26 28 30 32 POLAR: 343s

Vlead



Case Study 2: Quadrotor (QMPC)

Quadrotor: Dz =V, Py =vy, D=0, Uz =gtanl, v, =—gtang, U, =T —g,
Planner: q.’zz — bwa Qy — bya QZ — bza ba: = 07 by o 07 bz = 0.
NN controller size:

Safety: —0.32 < py — Qzy Py — @y, P2 — q= < 0.32. 20 % 20 (tanh)
0.2 bl 0.2 Quadrotor The neural network controller
o | === has a post-processing module
| & 0.15 | RN which maps the neural

a|nit%[39 i 75T . Ay N /Y network output to a control
0.1 | IS | ©l g AN & input according to a look-up
< 2,

0.2 | table.

0.05
e | } a-p-CROWN + Flow*: -
0-‘]'0.‘| 0 0.1 0.2 0.4 0.2 0 Initial Set 0.2 VCI‘ISIg 20 6528
Pz — 4z Py — 4y POLAR: 618

R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, 1. Lee. Verifying the safety of autonomous systems with neural network
controllers. ACM Transactions on Embedded Computing Systems (TECS) 20 (1) (2020) 1— 26.



Case Study 3: Mountain Car

SB()[t -+ 1] — CII()[t] -+ CBl[t],

Discrete-time dynamics:
z1[t + 1] = x1[t] + 0.0015 - u[t] — 0.0025 - cos(3 - xo[t]).

Mountain Car

= NN controller size: 16 X 16 (sigmoid+tanh)
0.1 - §
< 0 k Initial Set a-ﬁ—CROWN + Flow™: -
01 - Verisig 2.0: 237s
POLAR: 32s
-0.2 |
-2 0 2 4 6



Case Study 4: Quadrotor (QUAD)

’

\

&1 = cos(zg) cos(xg)xy + (sin(x7) sin(xg) cos(xg) — cos(x7) sin(xg)) x5

+ (cos(z7) sin(xg) cos(xg) + sin(x7) sin(xg)) x¢

Ty = cos(xg) sin(zg)x4 + (sin(x7) sin(xg) sin(zg) + cos(x7) cos(xg)) x5
+ (cos(z7) sin(xg) sin(zg) — sin(x7) cos(zg))

&3 =sin(xg)xy — sin(xr) cos(xg)xs — cos(x7) cos(xg) e

T4 =T12T5 — X11Te — gsin(xg)

T5 =X10Te — T12%4 + g cos(xg) sin(x7) /

Te =T11%4 — T10T5 + g cos(xg) cos(x7) — g — ui/m

L7 =x10 + sin(x7) tan(zs)z11 + cos(x7) tan(zs)zi2

tg = cos(x7)x11 — sin(x7)x12

, sin(z7) ,
Tg = x11 — sin(x7)x12
cos(zg)

. J — Jz ].
T10 = yJ T11T12 + J—U2/
. Jz - Jx 1
T11 = ZT10%12 + —U3/

Jy Jy

x I/ Jy:v x11 + iT

12 = 7 10211 7. W

Verisig 2.0:
POLAR:

1533s

QUAD

Initial Set

0 1 2 3 4 S

NN controller size: 64 X 64 X 64 (sigmoid)



More Experiments

NN Controller ReachNN*|Sherlock|Verisig 2.0
7" v = Mo [P OLAR g 8] 13
ReLU 2|20 12 26 42 -
1 0 sigmoid 21|20 17 75 - 47
tanh 2120 20 Unknown - 46
ReLU-+tanh |2 20 13 71 - =
ReLU 2|20 2 5 3 -
0 5 sigmoid 21|20 9 13 - 7
tanh 21|20 3 73 - Unknown
ReLU+tanh |2 |20 2 Unknown — —
ReLU 2|20 16 94 143 —
3 0 sigmoid 2|20 36 146 — 44
tanh 21|20 26 137 - 38
ReLU-+sigmoid| 2 | 20 15 150 - -
ReLU 2|20 2 8 21 ~
4 3 sigmoid 2|20 3 22 — 11
tanh 21|20 3 21 — 10
ReLU+tanh |2 |20 2 12 — —
ReLU 3 (100 13 103 15 -
5 3 sigmoid 3 (100 76 27 — 190
tanh 3 (100 76 Unknown — 179
ReLU+tanh |3 {100 10 Unknown — —
ReLU 3|20 16 1130 35 -
6 4 sigmoid 3120 21 13350 B 83
tanh 3|20 19 2416 — 70
ReLU+tanh |3 |20 15 1413 — —
ACC 6 tanh 3/20| 343 | Unknown - 3344
QMPC 6 tanh 2120 61 1 - 652
Attitude Control| 6 sigmoid 3|64 201 — — Unknown
QUAD 12 sigmoid 3/64| 1533 — — Unknown

! This example has multi-dimensional control inputs. ReachNN* only supports NN

controllers that produce single-dimensional control inputs.

e All of the tools compute functional
overapproximations using Taylor models.

e POLAR does not show 1its best performance,
since we need to use the same hyperparameters
in all of the tools to present a fair comparison.

e When using a time step which 1s same as the
control stepsize, POLAR only costs 0.5
seconds to complete test #1.



Source Code of POLAR



GitHub Repository

README.md

POLAR Official version

POLAR [1] is a reachability analysis framework for neural-network controlled systems (NNCSs) based on
polynomial arithmetic. Compared with existing arithmetic approaches that use standard Taylor models, our
framework uses a novel approach to iteratively overapproximate the neuron output ranges layer-by-layer with a
combination of Bernstein polynomial interpolation for continuous activation functions and Taylor model arithmetic
for the other operations. This approach can overcome the main drawback in the standard Taylor model arithmetic,
i.e. its inability to handle functions that cannot be well approximated by Taylor polynomials, and significantly
improve the accuracy and efficiency of reachable states computation for NNCSs. To further tighten the
overapproximation, our method keeps the Taylor model remainders symbolic under the linear mappings when
estimating the output range of a neural network.

Experiment results across a suite of benchmarks show that POLAR significantly outperforms the state-of-the-art
techniques on both efficiency and tightness of reachable set estimation.

Installation

System Requirements

Ubuntu 18.04, MATLAB 2016a or later

Dependencies

POLAR relies on the Taylor model arithmetic library provided by Flow*. Please install Flow* with the same directory
of POLAR. You can either use the following command or follow the manual of Flow* for installation.

* Install dependencies through apt-get install

sudo apt—get install m4 libgmp3-dev libmpfr—dev libmpfr-doc libgsl-dev gsl-bin bison flex gnuplot-x:

https://qgithub.com/ChaoHuang2018/POLAR Tool

(" )
POLAR Prototype

U J
A
4 1
o’ .
Y4 |
o’ .
~ ) :
Flow* Toolbox 0.9.0 .
4 J :
V\ !
A 2 1
. I
2 2 |
N . .

(" )

GNU Libs: GMP,
MPFR, GSL
_ _J

The polynomial arithmetic

~

framework 1s implemented in C++.

Taylor models are handled by the

Flow™ toolbox version.

Neural networks provided in
popular formats (e.g., h5 file) are
loaded by a Python program.

Extendable API in C++ for more

general CPS verification.



https://github.com/ChaoHuang2018/POLAR_Tool

Simple Example: Benchmark 1

System Reachability specification Tool setting

"POLAR_setting" . {

"dynamics" s { vinit": ["0.80:0.90", "0.50:0.60"],

"state name_list" . ["x@", "xl"], "time_steps" . 50, "taylor_order" . 4,

ngafe"s [vv] "bernstein_order": 4,

"control name list". ['Wﬂ'],
"ode list" . "x1", "u*x1“2—x@"] / "partition_num" . 10,

"control_stepsize". 0.2 "neuron_approx_type" . "Mixed",

"remainder_type" . "Symbolic"

¥

"neural_network" . "nn_1_sigmoid" },

"flowstar_setting" . {
"cutoff_threshold": 1e-8,
"flowpipe_stepsize"s 0.1,
"symbolic_queue_size" . 200

b

"output_setting" . {

"output_dimension" ¢ "x0", "xl"],

"output_filename" +« "benchmarkl"
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polar_tool system_benchmark_1.json specification_benchmark_1.json polarsetting_benchmark_1.json
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500 control steps, 22 seconds (M1 Mac)
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50 control steps, 2 seconds (M1 Mac)



Conclusion
e We presented a series of approaches for computing functional overapproximations for
NNCS flowmaps.

e All of the methods use Taylor model arithmetic but not limited to Taylor
approximations.

e The POLAR framework has a time complexity which 1s linear 1n the size of neural
networks.

e All of the methods satisty the following property.

Theorem.
If p(xy, 7) + I 1s the 1-th TM computed 1n the j-th control step, then the actual

reachable state atatimer € (j — 1)o,. + (i — 1)o + [0,0] from any x, € X, at
Xy € X, 1s contained in the box p(xy,t — (j — 1)o. — (i — 1)0) + L.




Further Observations

e It 1s hard to measure the error size in a pure range overapproximation. However, the
remainder size of a functional overapproximation directly tells the approximation
quality.

e [t 1s often not hard to compute an accurate polynomial approximation, however
evaluating a guaranteed error for it 1s not easy in general.

e Although all of our methods only consider deterministic behavior, they can be
immediately extended to handle sensing and actuation noises. Also, the QMPC
benchmark uses a look-up table to find control 1nputs.

e The methods may be extended to handle all continuous operations in learning-
enabled CPS.



Future Directions

e Relational abstraction for machine learning components, forward and
backward analysis.

e Falsification using functional overapproximations.
* Vulnerability or robustness checking for sate learning-enabled CPS.

e Tool improvement: using GPUs to perform numerical computation.



Thank You

for attending the course!



