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Neural-Network Controlled System (NNCS)
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Simplified NNCS

dx
dt

= f(x, u)

ux

• The controller is a feedforward neural 
network. 

• The neural network takes the system 
states as the input at the time  for 

. 

• The neural network produces the value 
for the control input  which will be used 
in the current step, i.e., . 

• The response time of the neural network 
controller is ignored.

t = iδ
i = 0, 1, …

u
t ∈ [iδ, (i + 1)δ]



Reachability Analysis of NNCS

• NNCS are still state feedback systems, and we may still use the main reachability 
analysis framework for NNCS. 

• The plant of an NNCS is still defined by an ODE. 

• The feedback law is not defined by a simple expression but a neural network. 

• Assume that all of the existing techniques can still be well used on the system 
components except the neural network. 

• We need at least a new approach to compute the reachable set under a neural 
network mapping.



Formal Definition of an Execution

• We assume that the plant is defined by 
the ODE . 

• The input-output mapping of the neural 
network controller is denoted by . 

• In the  control step, the control input 
 is updated as . Then the 

system evolves according to the ODE
. 

• Regardless of the possible disturbances 
from the environment, NNCS are 
deterministic systems.

·x = f(x, u)

κ

ith

u vi = κ(x(iδc))

·x = f(x, vi)



Computing Neural Network Output Ranges



Input-Output Mapping of a Neural Network

⋯ ⋯

0 kk − 1 K

Input: ⃗a 0 Input: ⃗a K = κ( ⃗a 0)

⋮

⋮

⋮

⋮

Output of the k-th layer: ⃗a k = σ(Wk ⃗a k−1 + ⃗b k)



Activation Functions

σ(x) = x

σ(x) =
1

1 + e−x

σ(x) =
ex − e−x

ex + e−x

σ(x) = max{0,x}

σ(x) = e−x2

<latexit sha1_base64="KcR9SdK738sKGWkCVah7PHDLd8g="></latexit>

�(x) =

⇢
1, x � 0
0, x < 0

Identity ReLU

Sigmoid

Tanh

Gaussian

Threshold



Existing Techniques for Computing NN Outputs

Constant bounds. [Huang et al. 2017], [Katz et al. 2017], [Dutta et al. 2018]. 
Polynomial bounds. [Zhang et al. 2018], [Wang et al. 2018], [Weng et al. 2018]. 
Geometric objects. [Gehr et al., 2018], [Singh et al., 2019], [Tran et al. 2020].

⋯ ⋯
⋮

⋮

⋮

⋮

Input Set Output Set



To compute NNCS reachable sets, is it sufficient to just 
add a method of computing neural network outputs?



Attempt: Sherlock + Flow* 

<latexit sha1_base64="WFidA8RSDYaodWW+AwST164fErU="></latexit>8
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v̇ = �x+ 0.1 sin(✓)
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!̇ = u
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x(0) 2 [0.6, 0.61], v(0) 2 [�0.7,�0.69],
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✓(0) 2 [�0.4,�0.39],!(0) 2 [0.59, 0.6]

Neural network output (control input) ranges are computed 
by Sherlock [Dutta et al. 2018]. Reachable sets are 
computed by Flow*.



Facts

• The ODEs are well handled by Flow*. 

• Sherlock computes the exact interval range of the control input in each control step. 

• In every control step, Sherlock computes the output range of the controller regarding 
to the current state set, and Flow* computes the reachable set under the updated ODE 
model. 

• Overestimation still accumulates heavily and the reachable set computation for NNCS 
fails.

Where is the overestimation from?



Investigating NNCS Flowmap

Xj−1 = {φN(x0, ( j − 1)δc) | x0 ∈ X0}

Uj−1 = {κ(φN(x0, ( j − 1)δc)) | x0 ∈ X0}

⋯

( j − 1)δc0

X0

x(t)

X0

u

x

• We use  to denote the flowmap function of an NNCS. 

• Then the reachable set at  is . 

• The control input applied in the  step  is . 

• Hence,  is uniquely determined by the initial state via the composite mapping .

φN

t = ( j − 1)δc xj−1 = φN(x0, ( j − 1)δc,0)
jth t ∈ [( j − 1)δc, jδc] vj−1 = κ(φN(x0, ( j − 1)δc,0))

vj κ(φN( ⋅ , ( j − 1)δc,0))



Main Issue in the Previous Solution

X0

Xj−1

⋯

Uj−1

The dependency from  to 
 is lost due to the 

interval overapproximation.

X0
Uj−1

Dependency: Initial state  Input  
ODE  reachable state  Input  
ODE  reachable state  … 

→ →
→ → →
→ →



How can we track the dependency in a flowmap function?



Our Solutions

[HSCC’19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan.
Reachability Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Inference.
In Hybrid Systems: Computation and Control (HSCC), pp. 157-168, 2019.

[TECS’19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu.
ReachNN: Reachability Analysis of Neural-Network Controlled Systems.
In ACM Transactions on Embedded Computing Systems (TECS), volume 18, number 5s, pp. 106:1-106:22. ACM, 2019.

[ATVA’22] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu.
POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems
Available at arxiv.org/abs/2106.13867.

Polynomial Regression (ReLU):

End-to-End Bernstein Approximation (Continuous): 

Layer-by-Layer Propagation using Polynomial Arithmetic (Continuous):

http://arxiv.org/abs/2106.13867


Polynomial Regression

• We compute a polynomial regression  based on a finite set of random samples in 
. 

• Then  can be viewed as a polynomial approximation of the neural network . 

• Next, we compute an interval  which contains the difference  for all
. 

• Hence,  is a functional overapproximation of .

p
Xj−1

p κ

I ε(x) = κ(x) − p(x)
x ∈ Xj−1

p + I κ

Main idea:



Step 1: Computing a Polynomial Regression

x

u = κ(x)

Xj−1

p(x)

• Generate a finite set of random 
samples in the set . 

• Compute their images under the neural 
network mapping . 

• Compute a polynomial regression  
which is as close as possible to the 
samples. 

• Then  will be used as an 
approximation of .

Xj−1

κ( ⋅ )

p

p
κ



Step 2: Remainder Evaluation 

x

u = κ(x)

Xj−1

p(x)p(x) + ε

p(x) − ε

• Purpose: We want to find a remainder 
interval  which is guaranteed to 
contain the approximation error of , 
i.e.,  for all . 

• Information we know: The range 
of the samples, the polynomial 
approximation . 

• Information we “do not know”: 
Although  can be explicitly expressed, 
the form is often too complicated.

[−ε, ε]
p

κ(x) − p(x) ≤ ε x ∈ Xj−1

Xj−1

p

κ



Step 2.1: Computing Piecewise Linear Polynomials

x

u = κ(x)

Xj−1

p(x)

Maximum difference ε1

• We adaptively choose a subset of  
and compute a linear polynomial over 
it. 

• The error between a linear polynomial 
and the polynomial regression is 
controlled to be less than a threshold. 

• Then, the error between the piecewise 
linear polynomials to the polynomial 
regression is defined as the maximum 
error .

Xj−1

ε1



Step 2.2: Computing the Error between the PWL model and κ

x

u = κ(x)

Xj−1

• x is the vector of variables to denote the NN input. 

• y is the vector of variables to denote the NN output. 

• z is the vector of variables to denote the output of 
the PWL model. 

• We want to find the maximum and minimum 
differences between z and y.



Background: MILP Encoding of ReLU NN
kk − 1 Activation function: 

 if ,  otherwise.y = x x ≥ 0 y = 0

Output of the k-th layer:  

,   if , 
,                                 otherwise.

xk,i = σ(Wi,k xk−1,i + bk,i)

xk,i = σ(Wi,k xk−1,i + bk,i) Wi,k xk−1,i + bk,i ≥ 0
xk,i = 0

xk,i

y ≥ x
y ≤ x + Mv
y ≥ 0
y ≤ M(1 − v)

MILP Encoding:

,  is a very large number.v ∈ {0,1} M



Error between  and κ p

x

u = κ(x)

Xj−1

Difference between  and the PWL model:  p ε1

Difference between the PWL model and :  κ ε2

Difference between  and  can be conservatively 
computed by the triangle inequality:  .

p κ
ε = ε1 + ε2



Revisit to the Case Study
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Sherlock + Flow*

Using polynomial 
regression



More Experiments





Pros and Cons

• Pros: 
Low overestimation accumulation: It is a functional overapproximation method for the 
NNCS flowmaps. 
Good average efficiency: Only need to solve an MILP problem. 
Allows to consider uncertainties: Noises in sensing and actuating. 

• Cons: 
The activation functions have to be ReLU. 
Very low efficiency in the worst case: Too many pieces in the PWL model, MILP problems 
are sometimes hard to solve.



End-to-End Bernstein Approximation

• We compute a (Multivariate) Bernstein polynomial  for the neural network  over 
the domain . 

• Next, we compute an interval  which contains the difference  for 
all . 

• Then  is a functional overapproximation of . 

• The main idea is very similar to the previous method, but we do not need an 
intermediate approximation for the error bound evaluation.

pB κ
Xj−1

I ε(x) = κ(x) − pB(x)
x ∈ Xj−1

p + I κ

Main idea:



Background: Univariate Bernstein Polynomial

[Wikipedia: Bernstein polynomial]

Given a continuous function  over the domain 
, its degree  Bernstein interpolation can 

be computed as 

 

such that . The monomials  are 
called Bernstein basis.

f(x)
x ∈ [0,1] n

p(x) = a0b0,n(x) + a1b1,n(x) + ⋯ + anbn,n(x)

av = f(v/n) bi,n(x)

Advantages: 
• The best polynomial approximation. 
• The error  converges to 0 when 

. 
• The size of  is linear in .

| f(x) − p(x) |
n → ∞

p(x) n



Examples of Bernstein Basis

[Wikipedia: Bernstein polynomial]

Order 1:
Order 2:
Order 3:
Order 4:

Bernstein polynomials of different orders use different bases.



Background: Multivariate Bernstein Polynomial

multivariate Bernstein 
basis

• The domain  can be shifted to any -dimensional box. 

• The degree of the polynomial is . 

• There are totally  coefficients need to be computed.

[0,1]m m
d1 + d2 + ⋯ + dm

m

∏
j=1

dj



Approximating a Neural Network

• A Bernstein polynomial can be directly 
computed for  over a given input 
range. 

• Since Bernstein approximation only 
requires the original function to be 
continuous, we may handle most of the 
activation functions. 

• We often do not need high-degree 
Bernstein polynomials.

κ



Error Bound Evaluation using Lipschitz Constant

u = κ(x)

pB(x)

Xj−1

Lipschitz continuity: 
∥κ(x1) − κ(x2)∥ ≤ Lκ∥x1 − x2∥

The error bound is proportional to the Lipschitz 
constant which is often conservatively estimated.



Error Bound Evaluation using Samples

u = κ(x)

pB(x)

Xj−1

s1 s2 s3

 

: number of subdivisions in the j-th dimension. 
: a sample.

ε =
L
2

m

∑
j=1 (

uj − lj
nj )

2

+ max
s

∥pB(s) − κ(s)∥

nj
s

Xj−1 ⊆ [l1, u1] × ⋯ × [lm, um]



Experiments



Pros and Cons (Comparing to the first method)

• Pros: 
Generality: Works on all continuous activation functions. 
Stable time cost: Does not require to solve optimization problems. 
The polynomial computation does not require to go though the neural network. 

• Cons: 
Very low efficiency in the worst case: The computation cost of a Bernstein polynomial is 
exponential in the number of variables. The number of samples in the remainder estimation is 
also exponential in the number of variables.



Layer-by-Layer Propagation using Polynomial Arithmetic

• The functional overapproximation  for  over  is computed in a layer-by-layer 
propagation manner using an extension of Taylor model arithmetic. 

• We use univariate Bernstein polynomial to approximate a non-differentiable activation 
function, and use both univariate Taylor and Bernstein polynomials to approximate 
differentiable activation functions. 

• Taylor model remainders can also be represented symbolically under linear mappings 
to reduce the error accumulation.

p + I κ Xj−1

Main idea:



Main Difference from the Previous Methods

⋯ ⋯
⋮

⋮

⋮

⋮

⋯ ⋯
⋮

⋮

⋮

⋮

POLAR

Sherlock, ReachNN

Xj−1 = q(x0) + J

Xj−1 = q(x0) + J

∀x ∈ Xj−1 . κ(x) ∈ p(x) + I

Uj−1 = p(q(x0) + J) + I

Uj−1 = pr(x0) + Ir

Computed by 
layer-by-layer 
propagation



Advantages

• There is no intermediate end-to-end overapproximation for the neural network. Notice 
that the size of this overapproximation may be exponential in the number of the 
neural network inputs. 

• All of the Taylor models computed in the layer-by-layer propagation are only over the 
variable(s) , and their sizes are independent from the size of the neural network. 

• For each neuron, we only need to compute one Taylor model. 

• All of the Taylor and Bernstein polynomials are univariate, since the activation 
functions are univariate.

x0



Main Algorithm

activation

function

x = w1(p1(x0) + I1) + w2(p2(x0) + I2) + b

y = σ(x)

Σ σ

weights

y

bias b
p1(x0) + I1

p2(x0) + I2

w1

w2

We compute a univariate 
polynomial approximation  
for  over the range of .

pσ(x)
σ(x) x



Remainder Evaluation

ε = max
i=1,⋯,m ( Bσ ( b − a

m
(i −

1
2

) + a) − σ ( b − a
m

(i −
1
2

) + a) + L ⋅
b − a

m )

a b

pσ(x) + ε

pσ(x) − ε

x

σ(x)

σ(x)



Example

1

2

−1

0.5

−0.5

1

−1

1

x1

x2

y
0

0.329 + 0.171x1 − 0.171x2 + 0.015x2
1 + 0.0152x2

2 − 0.03x1x2 + [−0.066,0.066]

0.654 + 0.315x1 + 0.079x2 − 0.049x2
1 − 0.003x2

2 − 0.025x1x2 + [−0.088,0.088]

0.615 + 0.053x1 + 0.0378x2 − 0.014x2
1

−0.003x2
2 − 0.003x1x2 + [−0.038,0.038]



Taylor vs. Bernstein

• A Bernstein approximation is often better than the Taylor approximation of the same 
order. 

• The remainder evaluation for a Bernstein polynomial is also more accurate than that 
for a Taylor polynomial of the same order. 

• However, the Taylor model composition used for each neuron is simplified by 
truncating the higher-order terms, and it could make a Bernstein approximation worse 
than a Taylor approximation. 

• Hence, for a differentiable activation function, we compute both Taylor and Bernstein 
overapproximations, and choose the more accurate one after composing them with the 
input Taylor model.



Case Study 1: Adaptive Cruise Control

lead
ego

- -CROWN + Flow*:  - 
NNV:                              - 
Verisig 2.0:                     3344s 
POLAR:                         343s

α β

NN controller size:  (tanh)20 × 20 × 20



Case Study 2: Quadrotor (QMPC)

R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, I. Lee. Verifying the safety of autonomous systems with neural network 
controllers. ACM Transactions on Embedded Computing Systems (TECS) 20 (1) (2020) 1– 26.

Safety:

Quadrotor:
Planner:

The neural network controller 
has a post-processing module 
which maps the neural 
network output to a control 
input according to a look-up 
table.

- -CROWN + Flow*:  - 
Verisig 2.0:                     652s 
POLAR:                         61s

α β

NN controller size: 
 (tanh)20 × 20



Case Study 3: Mountain Car

Discrete-time dynamics:

- -CROWN + Flow*:  - 
NNV:                              - 
Verisig 2.0:                     237s 
POLAR:                         32s

α β

NN controller size:  (sigmoid+tanh)16 × 16



Case Study 4: Quadrotor (QUAD)

Verisig 2.0:                     - 
POLAR:                         1533s

NN controller size:  (sigmoid)64 × 64 × 64



More Experiments

• All of the tools compute functional 
overapproximations using Taylor models. 

• POLAR does not show its best performance, 
since we need to use the same hyperparameters 
in all of the tools to present a fair comparison. 

• When using a time step which is same as the 
control stepsize, POLAR only costs 0.5 
seconds to complete test #1.



Source Code of POLAR



GitHub Repository

https://github.com/ChaoHuang2018/POLAR_Tool

Flow* Toolbox 0.9.0

GNU Libs: GMP, 
MPFR, GSL

POLAR Prototype • The polynomial arithmetic 
framework is implemented in C++. 

• Taylor models are handled by the 
Flow* toolbox version. 

• Neural networks provided in 
popular formats (e.g., h5 file) are 
loaded by a Python program. 

• Extendable API in C++ for more 
general CPS verification. 

https://github.com/ChaoHuang2018/POLAR_Tool


Simple Example: Benchmark 1
System Reachability specification Tool setting



Simple Example

50 control steps, 2 seconds (M1 Mac) 500 control steps, 22 seconds (M1 Mac)



Conclusion

• We presented a series of approaches for computing functional overapproximations for 
NNCS flowmaps. 

• All of the methods use Taylor model arithmetic but not limited to Taylor 
approximations. 

• The POLAR framework has a time complexity which is linear in the size of neural 
networks. 

• All of the methods satisfy the following property.

Theorem. 
If  is the i-th TM computed in the j-th control step, then the actual 
reachable state at a time  from any  at 

 is contained in the box .

p(x0, τ) + I
t ∈ ( j − 1)δc + (i − 1)δ + [0,δ] x0 ∈ X0

x0 ∈ X0 p(x0, t − ( j − 1)δc − (i − 1)δ) + I



Further Observations

• It is hard to measure the error size in a pure range overapproximation. However, the 
remainder size of a functional overapproximation directly tells the approximation 
quality. 

• It is often not hard to compute an accurate polynomial approximation, however 
evaluating a guaranteed error for it is not easy in general. 

• Although all of our methods only consider deterministic behavior, they can be 
immediately extended to handle sensing and actuation noises. Also, the QMPC 
benchmark uses a look-up table to find control inputs. 

• The methods may be extended to handle all continuous operations in learning-
enabled CPS.



Future Directions

• Relational abstraction for machine learning components, forward and 
backward analysis. 

• Falsification using functional overapproximations. 

• Vulnerability or robustness checking for safe learning-enabled CPS. 

• Tool improvement: using GPUs to perform numerical computation.



Thank You 
for attending the course!


