
Xin Chen
Assistant Professor, University of Dayton, USA.

The 18th International Summer School on Trustworthy Software. 2022.

Functional Overapproximation for
Neural-Network Controlled Systems

Neural-Network Controlled System (NNCS)

ActuatorsSensors Plant

State Perception

dx
dt

= f(x, u)

y

̂x

u

̂u

Decision Maker/
Controller

Simplified NNCS

dx
dt

= f(x, u)

ux

• The controller is a feedforward neural
network.

• The neural network takes the system
states as the input at the time for

.

• The neural network produces the value
for the control input which will be used
in the current step, i.e., .

• The response time of the neural network
controller is ignored.

t = iδ
i = 0, 1, …

u
t ∈ [iδ, (i + 1)δ]

Reachability Analysis of NNCS

• NNCS are still state feedback systems, and we may still use the main reachability
analysis framework for NNCS.

• The plant of an NNCS is still defined by an ODE.

• The feedback law is not defined by a simple expression but a neural network.

• Assume that all of the existing techniques can still be well used on the system
components except the neural network.

• We need at least a new approach to compute the reachable set under a neural
network mapping.

Formal Definition of an Execution

• We assume that the plant is defined by
the ODE .

• The input-output mapping of the neural
network controller is denoted by .

• In the control step, the control input
 is updated as . Then the

system evolves according to the ODE
.

• Regardless of the possible disturbances
from the environment, NNCS are
deterministic systems.

·x = f(x, u)

κ

ith

u vi = κ(x(iδc))

·x = f(x, vi)

Computing Neural Network Output Ranges

Input-Output Mapping of a Neural Network

⋯ ⋯

0 kk − 1 K

Input: ⃗a 0 Input: ⃗a K = κ(⃗a 0)

⋮

⋮

⋮

⋮

Output of the k-th layer: ⃗a k = σ(Wk ⃗a k−1 + ⃗b k)

Activation Functions

σ(x) = x

σ(x) =
1

1 + e−x

σ(x) =
ex − e−x

ex + e−x

σ(x) = max{0,x}

σ(x) = e−x2

<latexit sha1_base64="KcR9SdK738sKGWkCVah7PHDLd8g=">AAACO3icbVBNTxsxEPUCbWn6lcKRy4ioFZWqaLdChQNIqFw4AiKAFEeR15ndWHi9iz1bEa3yv7jwJ3rjwoUDFeLKHSfsgUKfZOnNezO258WFVo7C8DKYmZ179frN/NvGu/cfPn5qfl44dHlpJXZkrnN7HAuHWhnskCKNx4VFkcUaj+KT7Yl/9ButU7k5oFGBvUykRiVKCvJSv7nPnUozsXL2DTaBa0yIVzzGVJlKWCtG40rbMUTf4Suc8RRPIQTOIZzWsDGp0AzqVm5VOqR2v9kK2+EU8JJENWmxGrv95h8+yGWZoSGphXPdKCyo5y8lJTWOG7x0WAh5IlLsempEhq5XTXcfwxevDCDJrT+GYKo+nahE5twoi31nJmjonnsT8X9et6RkvVcpU5SERj4+lJQaKIdJkDBQFiXpkSdCWuX/CnIorJDk4274EKLnK78khz/a0c92tLfa2vpVxzHPltgyW2ERW2NbbIftsg6T7JxdsRv2N7gIroPb4O6xdSaoZxbZPwjuHwB996tY</latexit>

�(x) =

⇢
1, x � 0
0, x < 0

Identity ReLU

Sigmoid

Tanh

Gaussian

Threshold

Existing Techniques for Computing NN Outputs

Constant bounds. [Huang et al. 2017], [Katz et al. 2017], [Dutta et al. 2018].
Polynomial bounds. [Zhang et al. 2018], [Wang et al. 2018], [Weng et al. 2018].
Geometric objects. [Gehr et al., 2018], [Singh et al., 2019], [Tran et al. 2020].

⋯ ⋯
⋮

⋮

⋮

⋮

Input Set Output Set

To compute NNCS reachable sets, is it sufficient to just
add a method of computing neural network outputs?

Attempt: Sherlock + Flow*

<latexit sha1_base64="WFidA8RSDYaodWW+AwST164fErU=">AAACg3icbVHbattAEF2pTZO6N7d57MtQ05ASqkrBpH0JBPrSvqVQJwGvMav1SF6yWondkYkR+pF+Vt/6N1nbci9JBwbOnDOX3Zm00spRHP8KwgcPdx7t7j3uPXn67PmL/stXF66srcSRLHVpr1LhUCuDI1Kk8aqyKIpU42V6/XmlXy7QOlWa77SscFKI3KhMSUGemvZ/cI0Z8QZ4irkyjbBWLNtGS90Cn5XU3LRwAKfeF8D5hlpsqfc3cARxlAB3yhxymiOJd7/TNvE2l5cF5uKPuA63Yg0czawbDtyqfE7RtD+Io3htcB8kHRiwzs6n/Z++tawLNCS1cG6cxBVNfFdSUmPb47XDSshrkePYQyMKdJNmvcMW3npmBllpvRuCNft3RSMK55ZF6jMLQXN3V1uR/9PGNWWfJo0yVU1o5GZQVmugElYHgZmyKEkvPRDSKv9WkHNhhSR/tp5fQnL3y/fBxXGUnETDb8PB2dduHXvsNXvDDlnCPrIz9oWdsxGTAQsOgg9BHO6ER+FxONykhkFXs8/+sfD0FrzlvNg=</latexit>8
>><

>>:

ẋ = v
v̇ = �x+ 0.1 sin(✓)
✓̇ = !
!̇ = u

<latexit sha1_base64="ABV6n7MSCmbI5Pdjhb+1clQdRMI=">AAACEHicbVDLSgMxFM3UV62vUZdugkWsMA4zUlrdFXThsoJ9wHQomTRtQzOZIckUS+knuPFX3LhQxK1Ld/6NaTsLbT1ww+Gce7m5J4gZlcpxvo3Myura+kZ2M7e1vbO7Z+4f1GWUCExqOGKRaAZIEkY5qSmqGGnGgqAwYKQRDK6nfmNIhKQRv1ejmPgh6nHapRgpLbXN04eCc9ai3HPskqXL9S04TKVzxy5b+ild+VbbzDu2MwNcJm5K8iBFtW1+tToRTkLCFWZISs91YuWPkVAUMzLJtRJJYoQHqEc8TTkKifTHs4Mm8EQrHdiNhC6u4Ez9PTFGoZSjMNCdIVJ9uehNxf88L1HdS39MeZwowvF8UTdhUEVwmg7sUEGwYiNNEBZU/xXiPhIIK51hTofgLp68TOoXtluyi3fFfOUmjSMLjsAxKAAXlEEF3IIqqAEMHsEzeAVvxpPxYrwbH/PWjJHOHII/MD5/AJXTl+c=</latexit>

x(0) 2 [0.6, 0.61], v(0) 2 [�0.7,�0.69],
<latexit sha1_base64="asBl4rRLSE6KfrHSvm94s86ssrU=">AAACHHicbVBNaxsxENXmo0ndtHGSYy4ipuCCu2gT58M3Q3PIMYH4A3YXo5XHtohWu0izAWPyQ3LpX+klh4TSSw+F/JvIjgOt3QczPN6bQZqX5EpaZOzZW1ldW3+3sfm+9GHr46ft8s5u22aFEdASmcpMN+EWlNTQQokKurkBniYKOsnNt6nfuQVjZaavcZxDnPKhlgMpODqpVz6KcATIq+wLjaQOvzK/XnPtqBHXaJSlMHyzaMj840aN+Sdxr1xhPpuBLpNgTipkjste+XfUz0SRgkahuLVhwHKMJ9ygFAruSlFhIefihg8hdFTzFGw8mR13Rz87pU8HmXGlkc7UvzcmPLV2nCZuMuU4soveVPyfFxY4OIsnUucFghavDw0KRTGj06RoXxoQqMaOcGGk+ysVI264QJdnyYUQLJ68TNqHfnDi16/qleb5PI5Nsk8OSJUE5JQ0yQW5JC0iyD35QR7Jk/fde/B+er9eR1e8+c4e+Qfenxc/oZx9</latexit>

✓(0) 2 [�0.4,�0.39],!(0) 2 [0.59, 0.6]

Neural network output (control input) ranges are computed
by Sherlock [Dutta et al. 2018]. Reachable sets are
computed by Flow*.

Facts

• The ODEs are well handled by Flow*.

• Sherlock computes the exact interval range of the control input in each control step.

• In every control step, Sherlock computes the output range of the controller regarding
to the current state set, and Flow* computes the reachable set under the updated ODE
model.

• Overestimation still accumulates heavily and the reachable set computation for NNCS
fails.

Where is the overestimation from?

Investigating NNCS Flowmap

Xj−1 = {φN(x0, (j − 1)δc) | x0 ∈ X0}

Uj−1 = {κ(φN(x0, (j − 1)δc)) | x0 ∈ X0}

⋯

(j − 1)δc0

X0

x(t)

X0

u

x

• We use to denote the flowmap function of an NNCS.

• Then the reachable set at is .

• The control input applied in the step is .

• Hence, is uniquely determined by the initial state via the composite mapping .

φN

t = (j − 1)δc xj−1 = φN(x0, (j − 1)δc,0)
jth t ∈ [(j − 1)δc, jδc] vj−1 = κ(φN(x0, (j − 1)δc,0))

vj κ(φN(⋅ , (j − 1)δc,0))

Main Issue in the Previous Solution

X0

Xj−1

⋯

Uj−1

The dependency from to
 is lost due to the

interval overapproximation.

X0
Uj−1

Dependency: Initial state Input
ODE reachable state Input
ODE reachable state …

→ →
→ → →
→ →

How can we track the dependency in a flowmap function?

Our Solutions

[HSCC’19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan.
Reachability Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Inference.
In Hybrid Systems: Computation and Control (HSCC), pp. 157-168, 2019.

[TECS’19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu.
ReachNN: Reachability Analysis of Neural-Network Controlled Systems.
In ACM Transactions on Embedded Computing Systems (TECS), volume 18, number 5s, pp. 106:1-106:22. ACM, 2019.

[ATVA’22] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu.
POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems
Available at arxiv.org/abs/2106.13867.

Polynomial Regression (ReLU):

End-to-End Bernstein Approximation (Continuous):

Layer-by-Layer Propagation using Polynomial Arithmetic (Continuous):

http://arxiv.org/abs/2106.13867

Polynomial Regression

• We compute a polynomial regression based on a finite set of random samples in
.

• Then can be viewed as a polynomial approximation of the neural network .

• Next, we compute an interval which contains the difference for all
.

• Hence, is a functional overapproximation of .

p
Xj−1

p κ

I ε(x) = κ(x) − p(x)
x ∈ Xj−1

p + I κ

Main idea:

Step 1: Computing a Polynomial Regression

x

u = κ(x)

Xj−1

p(x)

• Generate a finite set of random
samples in the set .

• Compute their images under the neural
network mapping .

• Compute a polynomial regression
which is as close as possible to the
samples.

• Then will be used as an
approximation of .

Xj−1

κ(⋅)

p

p
κ

Step 2: Remainder Evaluation

x

u = κ(x)

Xj−1

p(x)p(x) + ε

p(x) − ε

• Purpose: We want to find a remainder
interval which is guaranteed to
contain the approximation error of ,
i.e., for all .

• Information we know: The range
of the samples, the polynomial
approximation .

• Information we “do not know”:
Although can be explicitly expressed,
the form is often too complicated.

[−ε, ε]
p

κ(x) − p(x) ≤ ε x ∈ Xj−1

Xj−1

p

κ

Step 2.1: Computing Piecewise Linear Polynomials

x

u = κ(x)

Xj−1

p(x)

Maximum difference ε1

• We adaptively choose a subset of
and compute a linear polynomial over
it.

• The error between a linear polynomial
and the polynomial regression is
controlled to be less than a threshold.

• Then, the error between the piecewise
linear polynomials to the polynomial
regression is defined as the maximum
error .

Xj−1

ε1

Step 2.2: Computing the Error between the PWL model and κ

x

u = κ(x)

Xj−1

• x is the vector of variables to denote the NN input.

• y is the vector of variables to denote the NN output.

• z is the vector of variables to denote the output of
the PWL model.

• We want to find the maximum and minimum
differences between z and y.

Background: MILP Encoding of ReLU NN
kk − 1 Activation function:

 if , otherwise.y = x x ≥ 0 y = 0

Output of the k-th layer:

, if ,
, otherwise.

xk,i = σ(Wi,k xk−1,i + bk,i)

xk,i = σ(Wi,k xk−1,i + bk,i) Wi,k xk−1,i + bk,i ≥ 0
xk,i = 0

xk,i

y ≥ x
y ≤ x + Mv
y ≥ 0
y ≤ M(1 − v)

MILP Encoding:

, is a very large number.v ∈ {0,1} M

Error between and κ p

x

u = κ(x)

Xj−1

Difference between and the PWL model: p ε1

Difference between the PWL model and : κ ε2

Difference between and can be conservatively
computed by the triangle inequality: .

p κ
ε = ε1 + ε2

Revisit to the Case Study

<latexit sha1_base64="WFidA8RSDYaodWW+AwST164fErU=">AAACg3icbVHbattAEF2pTZO6N7d57MtQ05ASqkrBpH0JBPrSvqVQJwGvMav1SF6yWondkYkR+pF+Vt/6N1nbci9JBwbOnDOX3Zm00spRHP8KwgcPdx7t7j3uPXn67PmL/stXF66srcSRLHVpr1LhUCuDI1Kk8aqyKIpU42V6/XmlXy7QOlWa77SscFKI3KhMSUGemvZ/cI0Z8QZ4irkyjbBWLNtGS90Cn5XU3LRwAKfeF8D5hlpsqfc3cARxlAB3yhxymiOJd7/TNvE2l5cF5uKPuA63Yg0czawbDtyqfE7RtD+Io3htcB8kHRiwzs6n/Z++tawLNCS1cG6cxBVNfFdSUmPb47XDSshrkePYQyMKdJNmvcMW3npmBllpvRuCNft3RSMK55ZF6jMLQXN3V1uR/9PGNWWfJo0yVU1o5GZQVmugElYHgZmyKEkvPRDSKv9WkHNhhSR/tp5fQnL3y/fBxXGUnETDb8PB2dduHXvsNXvDDlnCPrIz9oWdsxGTAQsOgg9BHO6ER+FxONykhkFXs8/+sfD0FrzlvNg=</latexit>8
>><

>>:

ẋ = v
v̇ = �x+ 0.1 sin(✓)
✓̇ = !
!̇ = u

<latexit sha1_base64="ABV6n7MSCmbI5Pdjhb+1clQdRMI=">AAACEHicbVDLSgMxFM3UV62vUZdugkWsMA4zUlrdFXThsoJ9wHQomTRtQzOZIckUS+knuPFX3LhQxK1Ld/6NaTsLbT1ww+Gce7m5J4gZlcpxvo3Myura+kZ2M7e1vbO7Z+4f1GWUCExqOGKRaAZIEkY5qSmqGGnGgqAwYKQRDK6nfmNIhKQRv1ejmPgh6nHapRgpLbXN04eCc9ai3HPskqXL9S04TKVzxy5b+ild+VbbzDu2MwNcJm5K8iBFtW1+tToRTkLCFWZISs91YuWPkVAUMzLJtRJJYoQHqEc8TTkKifTHs4Mm8EQrHdiNhC6u4Ez9PTFGoZSjMNCdIVJ9uehNxf88L1HdS39MeZwowvF8UTdhUEVwmg7sUEGwYiNNEBZU/xXiPhIIK51hTofgLp68TOoXtluyi3fFfOUmjSMLjsAxKAAXlEEF3IIqqAEMHsEzeAVvxpPxYrwbH/PWjJHOHII/MD5/AJXTl+c=</latexit>

x(0) 2 [0.6, 0.61], v(0) 2 [�0.7,�0.69],
<latexit sha1_base64="asBl4rRLSE6KfrHSvm94s86ssrU=">AAACHHicbVBNaxsxENXmo0ndtHGSYy4ipuCCu2gT58M3Q3PIMYH4A3YXo5XHtohWu0izAWPyQ3LpX+klh4TSSw+F/JvIjgOt3QczPN6bQZqX5EpaZOzZW1ldW3+3sfm+9GHr46ft8s5u22aFEdASmcpMN+EWlNTQQokKurkBniYKOsnNt6nfuQVjZaavcZxDnPKhlgMpODqpVz6KcATIq+wLjaQOvzK/XnPtqBHXaJSlMHyzaMj840aN+Sdxr1xhPpuBLpNgTipkjste+XfUz0SRgkahuLVhwHKMJ9ygFAruSlFhIefihg8hdFTzFGw8mR13Rz87pU8HmXGlkc7UvzcmPLV2nCZuMuU4soveVPyfFxY4OIsnUucFghavDw0KRTGj06RoXxoQqMaOcGGk+ysVI264QJdnyYUQLJ68TNqHfnDi16/qleb5PI5Nsk8OSJUE5JQ0yQW5JC0iyD35QR7Jk/fde/B+er9eR1e8+c4e+Qfenxc/oZx9</latexit>

✓(0) 2 [�0.4,�0.39],!(0) 2 [0.59, 0.6]

Sherlock + Flow*

Using polynomial
regression

More Experiments

Pros and Cons

• Pros:
Low overestimation accumulation: It is a functional overapproximation method for the
NNCS flowmaps.
Good average efficiency: Only need to solve an MILP problem.
Allows to consider uncertainties: Noises in sensing and actuating.

• Cons:
The activation functions have to be ReLU.
Very low efficiency in the worst case: Too many pieces in the PWL model, MILP problems
are sometimes hard to solve.

End-to-End Bernstein Approximation

• We compute a (Multivariate) Bernstein polynomial for the neural network over
the domain .

• Next, we compute an interval which contains the difference for
all .

• Then is a functional overapproximation of .

• The main idea is very similar to the previous method, but we do not need an
intermediate approximation for the error bound evaluation.

pB κ
Xj−1

I ε(x) = κ(x) − pB(x)
x ∈ Xj−1

p + I κ

Main idea:

Background: Univariate Bernstein Polynomial

[Wikipedia: Bernstein polynomial]

Given a continuous function over the domain
, its degree Bernstein interpolation can

be computed as

such that . The monomials are
called Bernstein basis.

f(x)
x ∈ [0,1] n

p(x) = a0b0,n(x) + a1b1,n(x) + ⋯ + anbn,n(x)

av = f(v/n) bi,n(x)

Advantages:
• The best polynomial approximation.
• The error converges to 0 when

.
• The size of is linear in .

| f(x) − p(x) |
n → ∞

p(x) n

Examples of Bernstein Basis

[Wikipedia: Bernstein polynomial]

Order 1:
Order 2:
Order 3:
Order 4:

Bernstein polynomials of different orders use different bases.

Background: Multivariate Bernstein Polynomial

multivariate Bernstein
basis

• The domain can be shifted to any -dimensional box.

• The degree of the polynomial is .

• There are totally coefficients need to be computed.

[0,1]m m
d1 + d2 + ⋯ + dm

m

∏
j=1

dj

Approximating a Neural Network

• A Bernstein polynomial can be directly
computed for over a given input
range.

• Since Bernstein approximation only
requires the original function to be
continuous, we may handle most of the
activation functions.

• We often do not need high-degree
Bernstein polynomials.

κ

Error Bound Evaluation using Lipschitz Constant

u = κ(x)

pB(x)

Xj−1

Lipschitz continuity:
∥κ(x1) − κ(x2)∥ ≤ Lκ∥x1 − x2∥

The error bound is proportional to the Lipschitz
constant which is often conservatively estimated.

Error Bound Evaluation using Samples

u = κ(x)

pB(x)

Xj−1

s1 s2 s3

: number of subdivisions in the j-th dimension.
: a sample.

ε =
L
2

m

∑
j=1 (

uj − lj
nj)

2

+ max
s

∥pB(s) − κ(s)∥

nj
s

Xj−1 ⊆ [l1, u1] × ⋯ × [lm, um]

Experiments

Pros and Cons (Comparing to the first method)

• Pros:
Generality: Works on all continuous activation functions.
Stable time cost: Does not require to solve optimization problems.
The polynomial computation does not require to go though the neural network.

• Cons:
Very low efficiency in the worst case: The computation cost of a Bernstein polynomial is
exponential in the number of variables. The number of samples in the remainder estimation is
also exponential in the number of variables.

Layer-by-Layer Propagation using Polynomial Arithmetic

• The functional overapproximation for over is computed in a layer-by-layer
propagation manner using an extension of Taylor model arithmetic.

• We use univariate Bernstein polynomial to approximate a non-differentiable activation
function, and use both univariate Taylor and Bernstein polynomials to approximate
differentiable activation functions.

• Taylor model remainders can also be represented symbolically under linear mappings
to reduce the error accumulation.

p + I κ Xj−1

Main idea:

Main Difference from the Previous Methods

⋯ ⋯
⋮

⋮

⋮

⋮

⋯ ⋯
⋮

⋮

⋮

⋮

POLAR

Sherlock, ReachNN

Xj−1 = q(x0) + J

Xj−1 = q(x0) + J

∀x ∈ Xj−1 . κ(x) ∈ p(x) + I

Uj−1 = p(q(x0) + J) + I

Uj−1 = pr(x0) + Ir

Computed by
layer-by-layer
propagation

Advantages

• There is no intermediate end-to-end overapproximation for the neural network. Notice
that the size of this overapproximation may be exponential in the number of the
neural network inputs.

• All of the Taylor models computed in the layer-by-layer propagation are only over the
variable(s) , and their sizes are independent from the size of the neural network.

• For each neuron, we only need to compute one Taylor model.

• All of the Taylor and Bernstein polynomials are univariate, since the activation
functions are univariate.

x0

Main Algorithm

activation

function

x = w1(p1(x0) + I1) + w2(p2(x0) + I2) + b

y = σ(x)

Σ σ

weights

y

bias b
p1(x0) + I1

p2(x0) + I2

w1

w2

We compute a univariate
polynomial approximation
for over the range of .

pσ(x)
σ(x) x

Remainder Evaluation

ε = max
i=1,⋯,m (Bσ (b − a

m
(i −

1
2

) + a) − σ (b − a
m

(i −
1
2

) + a) + L ⋅
b − a

m)

a b

pσ(x) + ε

pσ(x) − ε

x

σ(x)

σ(x)

Example

1

2

−1

0.5

−0.5

1

−1

1

x1

x2

y
0

0.329 + 0.171x1 − 0.171x2 + 0.015x2
1 + 0.0152x2

2 − 0.03x1x2 + [−0.066,0.066]

0.654 + 0.315x1 + 0.079x2 − 0.049x2
1 − 0.003x2

2 − 0.025x1x2 + [−0.088,0.088]

0.615 + 0.053x1 + 0.0378x2 − 0.014x2
1

−0.003x2
2 − 0.003x1x2 + [−0.038,0.038]

Taylor vs. Bernstein

• A Bernstein approximation is often better than the Taylor approximation of the same
order.

• The remainder evaluation for a Bernstein polynomial is also more accurate than that
for a Taylor polynomial of the same order.

• However, the Taylor model composition used for each neuron is simplified by
truncating the higher-order terms, and it could make a Bernstein approximation worse
than a Taylor approximation.

• Hence, for a differentiable activation function, we compute both Taylor and Bernstein
overapproximations, and choose the more accurate one after composing them with the
input Taylor model.

Case Study 1: Adaptive Cruise Control

lead
ego

- -CROWN + Flow*: -
NNV: -
Verisig 2.0: 3344s
POLAR: 343s

α β

NN controller size: (tanh)20 × 20 × 20

Case Study 2: Quadrotor (QMPC)

R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, I. Lee. Verifying the safety of autonomous systems with neural network
controllers. ACM Transactions on Embedded Computing Systems (TECS) 20 (1) (2020) 1– 26.

Safety:

Quadrotor:
Planner:

The neural network controller
has a post-processing module
which maps the neural
network output to a control
input according to a look-up
table.

- -CROWN + Flow*: -
Verisig 2.0: 652s
POLAR: 61s

α β

NN controller size:
 (tanh)20 × 20

Case Study 3: Mountain Car

Discrete-time dynamics:

- -CROWN + Flow*: -
NNV: -
Verisig 2.0: 237s
POLAR: 32s

α β

NN controller size: (sigmoid+tanh)16 × 16

Case Study 4: Quadrotor (QUAD)

Verisig 2.0: -
POLAR: 1533s

NN controller size: (sigmoid)64 × 64 × 64

More Experiments

• All of the tools compute functional
overapproximations using Taylor models.

• POLAR does not show its best performance,
since we need to use the same hyperparameters
in all of the tools to present a fair comparison.

• When using a time step which is same as the
control stepsize, POLAR only costs 0.5
seconds to complete test #1.

Source Code of POLAR

GitHub Repository

https://github.com/ChaoHuang2018/POLAR_Tool

Flow* Toolbox 0.9.0

GNU Libs: GMP,
MPFR, GSL

POLAR Prototype • The polynomial arithmetic
framework is implemented in C++.

• Taylor models are handled by the
Flow* toolbox version.

• Neural networks provided in
popular formats (e.g., h5 file) are
loaded by a Python program.

• Extendable API in C++ for more
general CPS verification.

https://github.com/ChaoHuang2018/POLAR_Tool

Simple Example: Benchmark 1
System Reachability specification Tool setting

Simple Example

50 control steps, 2 seconds (M1 Mac) 500 control steps, 22 seconds (M1 Mac)

Conclusion

• We presented a series of approaches for computing functional overapproximations for
NNCS flowmaps.

• All of the methods use Taylor model arithmetic but not limited to Taylor
approximations.

• The POLAR framework has a time complexity which is linear in the size of neural
networks.

• All of the methods satisfy the following property.

Theorem.
If is the i-th TM computed in the j-th control step, then the actual
reachable state at a time from any at

 is contained in the box .

p(x0, τ) + I
t ∈ (j − 1)δc + (i − 1)δ + [0,δ] x0 ∈ X0

x0 ∈ X0 p(x0, t − (j − 1)δc − (i − 1)δ) + I

Further Observations

• It is hard to measure the error size in a pure range overapproximation. However, the
remainder size of a functional overapproximation directly tells the approximation
quality.

• It is often not hard to compute an accurate polynomial approximation, however
evaluating a guaranteed error for it is not easy in general.

• Although all of our methods only consider deterministic behavior, they can be
immediately extended to handle sensing and actuation noises. Also, the QMPC
benchmark uses a look-up table to find control inputs.

• The methods may be extended to handle all continuous operations in learning-
enabled CPS.

Future Directions

• Relational abstraction for machine learning components, forward and
backward analysis.

• Falsification using functional overapproximations.

• Vulnerability or robustness checking for safe learning-enabled CPS.

• Tool improvement: using GPUs to perform numerical computation.

Thank You
for attending the course!

