Functional Overapproximation for
System Dynamics using Taylor Models

Xin Chen
Assistant Professor, University of Dayton, USA.

The 18th International Summer School on Trustworthy Software. 2022.

Overestimation in Set Propagation

— 7 T~

X (0)

_

Reachable set segments (flowpipes) are computed iteratively.

The overestimation 1n a flowpipe 1s propagated to the next one.

Overapproximations are often represented by convex sets, such as intervals, polytopes or
zonotopes, although the actually reachable sets are nonconvex.

It 1s hard to compute and represent nonconvex overapproximations.

Questions

e |s 1t possible to direct compute nonconvex overapproximation sets?
e If so, how can we represent the overapproximation sets?

e How easy can they be computed?

e How accurate can they be?

e How easy can we handle them 1n other computation and analysis tasks?

Flowmap of an ODE

General solution form of the ODE x = f(x, f) regarding to the initial condition x(#,) = x:

t

Qﬁf(il?(), t? tO) = T T f(gﬁf(ilfo, T, tO)v T)dT
to

v

The function ¢, detines a mapping from an initial contiguration to the reachable state at a time,
1.e., X(1) = X, 1,).

The set-propagation techniques compute convex overapproximate ranges of ¢,over small time
intervals 1teratively. However, is it possible to overapproximate the function itself?

Functional Overapproximation

e The actual flowmap function cannot be computed exactly.

e An overapproximate function of the flowmap contains not only the reachable set but
also the relation between the reachable state and 1ts 1nitial state.

o Ideal overapproximation form: (pf(x(O), t,0) € O(x(0),1,0) for all x(0) € Xand r > 0.

Counterexample Generation

Unsatfe Set

Reachable Set

ﬂapproximation

* When a pure range overapproximation intersect the unsafe set, we can only conclude that the
system might be unsafe.

Set of Initial States

e However, 1f a functional overapproximation detects a potential unsafe intersection, it may
backward find an overapproximation of the unsafe initial states.

How can we compute functional
overapproximations?

Outline

e Taylor Models as Functional Overapproximations.
e Taylor Model Arithmetic.
e Taylor Model Flowpipe Construction for ODEs.

e Time-Triggered Switches of Dynamics.

e Flow™ Toolbox.

Taylor Models

Overapproximation property: Vr € X.(f(z) € p(x) + [a, b])

Kyoko Makino and Martin Berz. Taylor Models and Other Validated Functional Inclusion Methods.
International Journal of Pure and Applied Mathematics 4 (4), 2003.

Basic Arithmetic of Taylor Models

Addition: (pr(x), L) + (pg(x),Ig) = (Pf + pg, L5 + Ig)

Multiplication:
(f(2), 17) - (pg(2),1g) = Py - Pg — ks B(p) g + B(pg) Iy + 11y + B(ry))

Integration: / (pr(s),Is)ds = (/ ps(s)ds —ri, B(rg) + 1f - |a, b))

a

(Pp> Ip)s (P, 1,) are assumed to be the TMs of some functions f, g respectively.

B(-) denotes the interval enclosure, and r, in a polynomial p — r, consists of
the terms in p of degrees > k.

Overapproximating a Function

g(x)
: . 9(z)
Steps of computing a TM u SNLLELE e
(p(x), 1) for a function g(x): \\ EJEEEP” -wENE 4
A |
\\. \ NI S B S
1. Computing a polynomial D (@) = sin(z). ' g(x/)/: STy
o . | I 1 S\ I 7 ‘ -] | ‘_
approximation p(x) of g(x) TN EEEEEE L A - ~
w.r.t. a bounded domain D. N EENENENERED" //'_\\\
; p — I P AL _JEHEEEN.
. \%\\ 2 1! 1 ; 3 \?)\ 2\/74/ ///. E 9] ? X
2. Evaluating a remainder \ ~ i JAnEEe B
interval I based on Lagrange NI | dfiman, NG iL
form such that N | JUEEEREEEL e T Y
| N
SEBh. - _af SNEEsEs o o o O e O
gx) e px)+1forallx € D . \ -3

Taylor Models # Taylor Overapproximations

The polynomial p could be any polynomial approximation of f, and more accurate
approximation requires a smaller remainder interval.

Taylor Approximation vs. Polynomial Interpolation

Taylor approximation Polynomial interpolation
e Original function should be e Original function is not required to
differentiable. be differentiable.
 Approximation is guaranteed to Approximation is guaranteed to
only “touch” the expansion point. “touch” the interpolation points.
 Approximation quality depends on e Approximation quality 1s overall

the distance to the expanding point. g00d.

Taylor Approximation vs. Polynomial Interpolation

Interesting questions: 9(a) 9(a)

* (G1ven the same order, 1s a polynomial
interpolation always better than a Taylor
approximation?

e [sis easy to evaluate a remainder for a
polynomial interpolation? If so, 1s 1t tight
enough?

 (Can we use polynomial interpolations 1n
Taylor model arithmetic?

(a) Order 4 Taylor approximation (in red) (b) Order 4 Chebyshev interpolation (in red)

Facts

e [f the original function has n variables, both of the Taylor approximation and the polynomial
interpolation have n variables.

n+k
The size of an order k polynomial which has n variables may have at most N, = (L) terms

(different monomuials).

 The computation of a Taylor expansion consists of a series of derivations at the expansion point, which
often does not require to compute the zero coefficients.

e The computation of a polynomial interpolation often requires to compute all of the coefficients in NV,
terms.

e If pisan order £ Taylor approximation of a function, then the corresponding order k — 1 approximation
can be obtained by simply discard (truncate) the terms in p of degree k.

e If pisan order £ polynomial interpolation of a function, then the terms in the order k — 1 interpolation
have to be re-computed.

Computing Taylor Model Flowpipes

Main Framework

— -

(
X

— T /

We perform the following steps for i = 0,..., N — 1 from the TM (x,,0) where x, € X:

I. Compute a Taylor approximation g(y,) for the flowmap function @y, 10 + 7, 10).
2. Evaluate a remainder J such that (pf(y, 10+ 1,10) € gq(y,7)+Jtorally € X,z € [0,0].

3. Computing p.(xy, 7) = g(X,, 7) + J.

Main Framework

Theorem.
Forany i =0,...,N — 1, the reachable state at a time ¢ € [i0, (i + 1)0] from any
initial state x, € X, 1s contained in the interval p;(x,, t — i0) + ..

Computing an Order k£ Taylor Approximation

1. Set p(xy, 7) = X,.

T

2. Repeatedly compute p(x,, 7) = x, + J f(p(xy, $), s)ds and only keep the terms of low degrees.
0

Example: x =2 + x*

P =X (initial)

P =Xyt J (2 + Xg)ds = xg+ 27 (1st iteration, order 1)
0

p=Xxy+ J (2 4 (xg + 25)9)ds ~ x5+ 27 (2nd iteration, order 2)
0

f 4
p=Xxy+ J (2 + (xg + 25)2)ds ~ xy + 27 + ng + 2X07° + 513 (3rd iteration, order 3)
0

Evaluating a Conservative Remainder

Assume that p(x,, 7) 1s already a polynomial approximation of the flowmap, then for any remainder /,

if the|TM of x;, + J f(p(xy, s) + 1, s)ds 1s contained in p(x,, s) + I} then p(x,, s) + I 1s a functional
0

overapproximation of the flowmap.

The Picard operation contracts the TM p(x,, s) + /.

We may repeatedly perform the Picard operation to refine a valid remainder.

Roundoftf Errors

Example: the decimal number (9.4)19 = (1001.0110)5 can be rearranged into

+1.0010110011001100110011001100110011001100110011001100110... x 2°
52 bits

[Wikipedia: Round-off error]

e Many non-integer numbers can not be represented exactly in the floating-point format.

e We need to modify the standard interval arithmetic to ensure the conservativeness.
E.g., [a,b]+ [c,d] = [a + ¢, b + d]. Interval multiplication is more complex.

e Non-interval values may be rounded to their closest floating-point numbers, and the
conservativeness of the result could be verified afterwards.

Conservative Interval Multiplication

Computing a conservative interval for [a, b] - [c, d]:

Case 1: a > O and ¢ > 0. The result 1s [ac, bd].

Case 2: a > 0 and d < 0. The result is [bc, ad].

i Itis expensive to take |
iroundoff errors into account,

Case 3: a > 0and O € (c, d). The result is [bc, bd].
Case 4: b < 0 and ¢ > 0. The result is [ad, bc].
Case 5: b <0and d < 0. The result 1s [bd, ac].

Case 6: b > 0and O € (c,d). The result 1s [ad, ac].

Conservativeness of the Remainder Evaluation

’XO -+ j f(p(xo, S) -+ I’ S)dS > Interval CoefﬁCIentS
0

T

-
e
-~
~
~§
~

.......

~~~~~~ D?
................ ’
.....
A 5
L S
| |
v 4 [ |
V 4
" 4
Y 4
Xn.T) — Xn. T ‘
> 4
0> 0> ~ ¢
P4
'.f

=~
~~~
~

If p(xy, 7) 1s the order k Taylor apprsximation of the flowmap,
then g(x,, 7) — p(xy,) only contains roundoff errors.

Example: Spring Pendulum

e

r o=

v — Vg

o = r-vj+g-cos(d) —k-(r—L)
Do (2-vr-v9—7|:g-sin(9))

Right Figures:

Taylor model flowpipes (wrapped by
octagons) computed from the nitial set

r(0) € [1.19,1.21],6(0) € [0.49,0.51], - -

v.(0) = 0,v,(0) = 0.

Stepsize: 0.05, Order: 5.

tttttt

Performance Improvement

e Adaptive stepsize for the TM flowpipes - For each TM, finding the largest stepsize
according to a given remainder.

e Adaptive approximation order - For each TM, finding the smallest order according
to a given remainder.

e Cutting off the “small” terms regularly - The polynomial of a TM may have at most

k

threshold and add their interval enclosures to the remainder.

n+k
() terms. We may regularly remove the terms whose range are smaller than a

However, the above methods do not improve the overall performance.

Accumulation of Overestimation

A= (Sh)) = ()

Taylor model computation may also have wrapping effect:
e Remainders are always represented as intervals.
e Non-polynomial parts are always evaluated by interval arithmetic.

Using Symbolic Representations
fix) =A;x+ g,(x) H(x) =A, x + g,(x)

142’/x' O ”””"0
Al X " - q “« We do not compute the the
I:I / g 2()6) . o < intervals out, but track their

" linear transformations.
X 2

=

Xin Chen and Sriram Sankaranarayanan. Decomposed Reachability Analysis for Nonlinear Systems.
In Real-Time Systems Symposium (RTSS’16), pp. 13-24. |IEEE, 2016.

11

Example: Spring Pendulum '°

—_
o —
T

Stepsize: 0.05, Order: 35, |
T = 30.

0.6

- N w H (8] [e] ~ © ©
T T T T T T T T

next TM due to ot P
the too large =" :‘f___ bt

0.1 M\\? annOt C Ol’IlpU.tC the 8

n
T

i1 ! |
LN
| | I|I
—h

b

S Time cost: 18 seconds
(M1 Mac) D T R Tam
Using Interval Remainders

Using Symbolic Remainders

Time-Triggered Switches

T = fZ(xvt)

T = fl(xvt)

State Feedback System

lllllllllllllllllllllllllllllllll
* *

" “
llllllllllllllllllllllllllllllll

Uy the interaction happens 1
every o, time

dx

E :f(xau)

Deterministic flowmaps with time-triggered switches can
be overapproximated by TMs using the standard
flowpipe construction framework.

Example: Quadcopter

(&1 = cos(xg) cos(xg)x4 + (sin(x7) sin(xg) cos(zg) — cos(x7) sin(xg)) 5 ‘6 | | | |
+ (cos(x7) sin(zg) cos(xzg) + sin(z7) sin(xg)) x6
Ty = cos(xg) sin(xg)z4 + (sin(x7) sin(xg) sin(zg) + cos(z7) cos(zg)) x5 1.4 - i
+ (cos(z7) sin(xg) sin(xg) — sin(x7) cos(xg)) xg 1ol |
&3 =sin(xg)r4 — sin(x7) cos(xg)xs — cos(x7) cos(zg)xs
T4 =T12%5 — T11%6 — g sin(xg) Tr — H i ~
L5 =T10T6 — T12%4 + g cos(xs) sin(z7) — 0. I I - |
Te =T11T4 — T10Z5 + g cos(xg) cos(x7) — g — u/m I
{ &7 =x10 + sin(x7) tan(xs)x11 + cos(z7) tan(zg)ris . 0.6 ’ I i
tg = cos(x7)r11 — sin(xy)T12 8 0.4 ll I 1
Tg :(s;r;((z;)) r1, — sin(z7)x12 o2 |l I 1
T10 =JyJ_wJZ$11$12 + Jimuz/ 0 [t -
T11 ZJZLJw Z10%12 + Jiyu;g/ -0.2 -
T12 _h T10Z11 + iﬂp | |
\ J J2
0.6 ' ' ' '

Feedback Law (applied every 0.1 seconds):

21€[—0.4,0.4], 22€[—0.4,0.4], z3€[—0.4, 0.4], z,€[—0.4, 0.4],
.7356[—0.4, 0.4], TeE [—0.4, 0.4], r7=0, xg=0, £9=0, £19=0, x11=0, £12=0

up = 7.14285714285714(x3 — 1) — 2.14285714285714x¢

U — —IL7 — L10

uz = —g — T11 Time cost: 4.8 seconds (M1 Mac)

Other Operations on Taylor Models

e Intersection. When a condition 1s associated with a switch, we need to find out all
TMs that satisty the condition.

e Union. When several switches may be performed nondeterministically, we sometimes
need to merge the TMs to reduce the time cost.

However we are not going to use them in this course.

é Flow™ Toolbox -
? A Platform for Modeling and Analysis of Cyber-Physical Systems

Brief Introduction

Formal verification tool for time-bounded reachability analysis and safety verification.
Discrete, continuous and hybrid dynamical systems.

Using Taylor models, intervals, zonotopes, and convex polyhedra as set
representations.

The first version was released in 2013 [RTSS’12, CAV’13].
Version 1.2.0 was released in 2015 (Performance improvement).

Version 2.1.0 was released 1n 2017 (Performance improvement and new features
[RTSS’16, EMSOFT’17]).

Toolbox version will be released soon. (Re-designed data structures, new features,
significant performance improvement).

Website of the Tool

[https://github.com/chenxind15/flowstar]

(f " Flow* Toolbox -
A Platform for Modeling and Analysis of Cyber-Physical Systems

Introduction

This is the homepage of the toolbox version of Flow* The first version of Flow* was released in the year of 2013, and improved in 2015
(version 1.2.0) and 2017 (version 2.1.0). The purpose of releasing a toolbox version is to provide a more flexible way to model and analyze
cyber-physical systems (CPS), and expose the key functions to the tools for verifying more complex systems, such as the CPS with

machine learning components. The main data structures in the toolbox version are completely re-designed and implemented such that the
performance is at least 10x faster than the version 2.1.0.

https://github.com/chenxin415/flowstar

How to Use the Toolbox?

r

.

Verification
Problem

2

modeling

J

.....
..........
““““

* .
tttt
* .

‘e
‘e
‘e
.
",

.
““
.
“:
““““

\—

C++ Program

r

.

libflowstar.a

~

/

compilation

/'L

J

A

Compilation of the source
code of Flow* toolbox.

.
.
.
.
““
.t
..

aet

........

-

Online Verification for a Racing Car. [IROS’20]

Verification
Program

Run this executable file to
obtain the verification result.

Flowpipe

T

Linear Flowmap
Abstraction

Taylor Model
Vector

T

A

Taylor Model

Univariate
Taylor Model

T

Polynomial

T

Univariate
Polynomial

R

Data Structures (Toolbox Version)

Z.onotope

.

Matrix

Linear Nonlinear
Dynamics Dynamics
Expression ——| Constraint

~

— 7

Interval

T

Real

Conservativeness

e Polynomial coefficients - It 1s unnecessary to represent all real numbers as intervals.
We only need to ensure that a transformation from a TM n(p(x) + I) regarding to
x € D produces a TM ¢g(x) + J which 1s guaranteed to contain the actual result.

e In Flow®, the roundoft errors in flowpipe construction for nonlinear ODE 1s
considered 1n the remainders. The only transformation 1s composing two TMs

qg(p(x) + I, 1) + J such that J 1s already guaranteed to contain the roundoff error when
the contractiveness of the Picard operation on p(x) + I 1s verified.

e In Flow™, roundoff errors are taken into account in a range overapproximation of
TMs. Every resulting real value 1s calculated as an interval.

e In Flow™, roundoff errors are taken into account in safety verification.

e Whether or not considering roundoftf errors 1n other operations can be decided by users.

Installation

e The following GNU open-source libraries should be pre-installed:
M4, GMP, MPFR, GSL, GLPK, BISON, FLEX

most of them are available at https://ftp.gnu.org/. All of them can be compiled and
installed using the 3 steps: ./configure, make, and make install.

e Flow™ requires GCC 8.0 or later versions.

 The source code of Flow™ can be compiled by simply running make. If it is
successful, a file named libflowstar.a will be created.

https://ftp.gnu.org/

Modeling a Simple Reachability Problem

ODE: = =1 —sin(x)

Initial Set: «(0) € [4.8,5.2)

Flow™ Setting: stepsize: 0.02, order: 5
cutoft: 1e-10 il

Time cost: 1.8 seconds (M1 Mac)

Exercises

1. Compile and run the tool Flow™.

2. Use Flow™ to compute the reachable set of the Van der Pol oscillator:

=y, y=(1-x)y—x
from the initial set x(0) € [1.35,1.55], y(0) € [2.35,2.45].

3. Try some different settings in Flow™ and compare the results to CAPD.

Reading Assignments

e Polynomial Regression.
e Polynomial Interpolation.
e Bernstein Polynomial.

e Feedforward Neural Network.

