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Collections of objects
@ A setis any well-defined collection of objects.

@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):

definition Oceans :: "ocean set" where

"Oceans = {Atlantic, Arctic, Indian, Pacificl}"
@ In HOL, this is sugar for insert :: ’a = ’a set = ’a set.
() insert Atlantic

(insert Arctic

(insert Indian
(insert Pacific {})))
insertz (insertx A) = insertx A insert_absorb2

insertz (inserty A) = inserty (insertz A)  insert_commute

@ Unlike a list, the occurrence and order of members is irrelevant.
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Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites insert iff
@ Extensionality

A=B & (Vz.(z€ A) & (z € B)) set_eq iff
@ Subset

ACB & VreArzeDB subset_eq

A=B << ACBABCA set_eq_subset

@ Empty set {} (mathematically ()):
(c € {}) = False empty_iff
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Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

'Fte A te BI'FP
ACBEP

subsetD

'-ACB '-BCA

TE A=D1 equalityl

teAte BTFP t¢At¢BTFP

A—BTrP equalityCE

@ Subset and equality proofs can be automated with blast and auto.
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Bounded Quantifiers

@ Sets can be used to bound the quantifiers.
@ V€ A. P(x)—for every element of A predicate P holds.
@ Juz € A. P(x) —there is an element of A such that 7 holds.

@ In HOL, these are syntactic sugar for regular quantification:

(Vz e A.P(z)) = (Vz.z2 € A— P(2))

(Jz € A.P(z)) = (Jz.x € AN P(z))
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Set comprehension

@ Elements of set S satisfying property P (maths: {z € S5 | P(xz)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Collect :: (’a= bool) = ’a set

{z.P(z)} = Collect P
a € (Collect P) & P a mem_Collect_eq
Collect (Ax.x €A)=A Collect mem eq
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Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx=29"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)
from xs show "® < x" by auto
from xs show "x < 100" by auto
ged
ged
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Set Operators

@ Set union:

re€(AUB) & r€AVvreDB Un_iff
@ Set intersection:

re€(ANB) & r€e ANz eDB Int_iff
@ Set difference (maths: A\ B):

r€(A-B) © 1€ ANz ¢ B Diff iff

Example

@ {Atlantic, Indian} U {Indian, Pacific} = { Atlantic, Indian, Pacific}
@ {Atlantic, Indian} N {Indian, Pacific} = {Indian}
@ {Atlantic, Indian} — {Indian, Pacific} = { Atlantic}
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Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---

relJS & (JA€SexcA)

@ Distributed intersection:

MA,B,C,---} =ANBNCA---

re€S & (VAeSezx e A)

Union_iff

Inter_iff
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Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).
@ Lower bound: {m. .} ([m, +00)).

@ Upper bound: {..n} ((—oo, n}).

@ Strictly between two endpoints: {m<. .<n} ((m, n)).

@ Strict lower bound: {m<. .} ((m, +00)).

@ Strict upper bound: {..<n} ((—oc, n)).
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Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un

@ Lists can be converted to a finite set with set :: ’a list = ’a set.

@ The resulting set ignores the occurrence and order of list elements :
finite (set xs) finite_set
set [] = {} empty_set
set (x # xs) = insert x (set xs) list.set
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Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: 'a set = ’a set set in Isabelle/HOL.
@ Set of all finite powersets: [ A.

@ Fpow :: "a set = ’a set set in Isabelle/HOL

FA = {X.X C AN finite X} Fpow_def
FA C PA Fpow_subset_Pow
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Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z, ).
@ 1 is an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff
@ Membership:

(T1,...,0p) EAL X ... X Ay & ;€A N... N2y €Ay
@ Equality:

(1, oy Zp) = (Y1 s Un) & TI=WUNA ... \NTp=1Yn



Outline

@ Uuncomputable objects
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Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.

@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.

@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).

@ Can’t compute {0::real. .1} as real numbers aren’t enumerable.
{0::real..1} = {0, 1, 0.1, 0.01, 0.001, v2/2, 7/4, ---}

@ Reason symbolically using theorems.

@ Can usually compute with finite sets.
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Conclusion

This Lecture
@ Set theory in Isabelle/HOL.
@ Finite sets.
@ Uncomputable objects.

Next Lecture
@ Foundations of types.
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