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Formal Proof

Proof: demonstrate truth of a statement. Argument and evidence.

Formal proof: turning logical conjectures into theorems.

Conjecture: statement that a formula is true, without yet having a proof.

Assume x > 0 then x ∗ 2 > 0.

Fermat’s Last Theorem:

Assume n > 2. Then:

There are no three positive integers a, b, c with an + bn = cn.

Proof shows how to formally derive conclusions from assumptions.

By application of axioms, existing theorems and deduction rules.
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Proof as Computation

Analogy between proof and a function mapping inputs to outputs:

Theorem provers and proof assistants help us in this process.

Two main classes: automated and interactive theorem provers.
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Automated Theorem Provers
Automated theorem proving is an undecidable problem.

Attractive push-button technology. Like model checkers.
SMT solvers (like Microsoft’s Z3) prove arithmetic theorems etc.
Usually limited to first-order logic.
Variables range over individuals not other predicates.
In general, cannot handle induction, which requires higher order logic.
We need Interactive Theorem Provers (ITPs).
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Interactive Theorem Provers

A proof is a script or program that acts on a proof state.

Proof state: assumptions and outstanding conjectures (“subgoals”).

Proof tactics and deduction rules subdivide and eliminate proof goals.

“Divide and conquer” approach to proof.

Proof: game where winning condition is QED (no more subgoals).
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Isabelle/HOL
Interactive theorem prover for Higher Order Logic (started in 1986).
isabelle.in.tum.de

Developed by Larry Paulson, Tobias Nipkow, Markarius Wenzel.
HOL is a powerful functional specification language.
Like Haskell: data structures, recursive functions, type classes, etc.
Readable proofs in “natural deduction” style (Isar).
Large online library of formalised mathematics.
Archive of Formal Proofs www.isa-afp.org/.
“Quantum and Classical Registers”, “Category Theory for ZFC”, . . .
Support for verified code generation.
Implemented in the ML functional language and Scala.
Program verification and assured software development.

isabelle.in.tum.de
www.isa-afp.org/
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Assured Development with Isabelle

Isabelle is more than an interactive theorem prover.

Powerful automated tools (e.g., ATPs) used in system development.

Flexible Proof IDE (PIDE) for programming, proof, and tool integration.

Machine-checked document model with an extensible parser.

Additional grammar categories support domain specific languages.

Unicode symbols for type setting mathematics.

Support for mixing formal and informal content.

Plugins to interface with external tools (ATPs, SMT, CAS, etc.).

An ideal platform for assured software development.
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seL4.verified in Isabelle/HOL

Formal verification of OS microkernel (sel4.systems/):

seL4: small secure microkernel with 8,700 lines of C.

Different processes are isolated: strictly partitioned memory.

Behaviour and implementation modelled in Isabelle/HOL (2009).

“The binary code of the seL4 microkernel correctly implements the
behaviour described in its abstract specification and nothing more.
Furthermore, the specification and the seL4 binary satisfy the classic
security properties called integrity and confidentiality.”

Isabelle/HOL proof gives a strong guarantee that this property holds.

https://sel4.systems/
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Other Proof Tools

There are many proof assistants besides Isabelle/HOL.

Mathematically principled: Coq, Lean, Agda, Idris, Mizar.

Highly automated: PVS, ACL2, Z/Eves.

Usable and bespoke: KeY, KeYmaera X, Atelier B Prover.

Isabelle provides a reasonable trade-off between all three aspects.

E.g., no dependent types but a high degree of automation.

Isabelle: industrial strength with a proven track record (as does Coq).

Worth watching developments in other tools (e.g., Lean).
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We interact with Isabelle editing theory
documents in the frontend.

Plugins contain ML code that execute
updates in the backend.
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imports Main

begin

definition double :: "nat ⇒ nat" where
"double x = x + x"

value "double 7" (* Returns 14 *)
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Theory Document Structure

Outer Syntax.
Definitional layer with simple combinatory parser.
Sequence or hierarchy of commands.
Commands have a major keyword and several minor keywords.
Can also refer to terms (inner syntax).

Inner Syntax.
Transition denoted by speech marks "..." or cartouche glyphs ‹...›.
More sophisticated multi-stage parser supporting mixfix.
Binary, ternary, quaternary (etc.) operators with various associations.
Isabelle produces logic terms, which are checked and certified.
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Unicode Syntax
Isabelle/jEdit includes Unicode font with mathematical symbols.
In theory files use symbol code (similar to LATEX markup).
\<alpha>; α, \<forall>; ∀, \<and>; ∧, etc.

Autocompletion: partially typed symbol names appear in a list
Select and press TAB key.
ASCII: -->; −→, ==>; =⇒, \/; ∨, (|; L, etc.
Text modifiers: \<^bold>, \<^sub>, \<^sup>, etc.

If in doubt, use the symbol table at the bottom of the jEdit window.
Hovering the mouse over a symbol gives its name and abbreviations.
See also §2.2 of the Isabelle/jEdit reference manual on more shortcuts.

https://isabelle.in.tum.de/dist/Isabelle2021/doc/jedit.pdf
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Overview of Isabelle Documentation
For more, see isabelle.in.tum.de/documentation.html.
Available within Isabelle/jEdit in the left-hand Documentation tab.

prog-prove: Programming and Proving in Isabelle/HOL.
Introduction to functional programming and Isar proofs.
Part of the Concrete Semantics book by Nipkow and Klein.

isar-ref: The Isabelle/Isar Reference Manual.
Comprehensive overview of commands, syntax, and tactics.

jedit: Isabelle/jEdit.
Documentation on the jEdit interface, including shortcuts + tools.

system: The Isabelle System Manual.
Documentation on the Isabelle tool architecture.

isabelle.in.tum.de/documentation.html
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