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Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.
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Free and Fixed Variables in Theorem Specifications
Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.
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Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.
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Quantifier Deduction Rules
Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



10/19

Outline

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y

allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y

allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.
Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.
Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



13/19

Example: Fixed Variables in Isar



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



14/19

Example: Syllogism in Isar



14/19

Example: Syllogism in Isar
Example



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
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We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...
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Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧
n.P n =⇒ Q) =⇒ Q for arbitrary Q .
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Obtain Example: Even Numbers
Natural Deduction Proof

– asm
x mod 2 = 0, x = 2 ∗ y ` x = 2 ∗ y

exI
x mod 2 = 0, x = 2 ∗ y ` (∃ b. x = 2 ∗ b)

exE
x mod 2 = 0 ` (∃ b. x = 2 ∗ b)

allI, impI
` ∀ a. a mod 2 = 0 −→ (∃ b. a = 2 ∗ b)

lemma "∀ a::nat. a mod 2 = 0 −→ (∃ b. a = 2 * b)"
proof (rule allI, rule impI)
fix x :: nat
assume "x mod 2 = 0"
then obtain y where "x = 2 * y" using mod_eq_0D by blast
thus "∃ b. x = 2 * b"
by (rule_tac x="y" in exI, assumption)

qed
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lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
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show "P v" by (rule a)

qed
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