
1/20

The Isar Proof Language

Simon Foster Jim Woodcock
University of York

16th August 2022



2/20

Overview

1 Writing Properties and Proofs in Isar

2 Lemmas and Theorems

3 Equational Proofs with the Simplifier

4 Readable Proofs with Isar



3/20

Outline

1 Writing Properties and Proofs in Isar

2 Lemmas and Theorems

3 Equational Proofs with the Simplifier

4 Readable Proofs with Isar



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



4/20

Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.



5/20

Outline

1 Writing Properties and Proofs in Isar

2 Lemmas and Theorems

3 Equational Proofs with the Simplifier

4 Readable Proofs with Isar



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



6/20

Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



7/20

Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



8/20

One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



9/20

Outline

1 Writing Properties and Proofs in Isar

2 Lemmas and Theorems

3 Equational Proofs with the Simplifier

4 Readable Proofs with Isar



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



10/20

The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



11/20

Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



12/20

Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



13/20

theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



14/20

Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.



15/20

Outline

1 Writing Properties and Proofs in Isar

2 Lemmas and Theorems

3 Equational Proofs with the Simplifier

4 Readable Proofs with Isar



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



16/20

Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



17/20

Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.



18/20

Example: Basic Proof in Isar (Alternative)
lemma square_calc_alt:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have "x + y = 1 + 2"
by (simp add: assms)

then have "x + y = 3"
by simp

hence "square (x + y) = square 3"
by simp

hence "square (x + y) = 3 * 3"
by (simp add: square_def)

then show ?thesis (* or use "thus ?thesis" *)
by simp

qed



18/20

Example: Basic Proof in Isar (Alternative)
lemma square_calc_alt:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have "x + y = 1 + 2"
by (simp add: assms)

then have "x + y = 3"
by simp

hence "square (x + y) = square 3"
by simp

hence "square (x + y) = 3 * 3"
by (simp add: square_def)

then show ?thesis (* or use "thus ?thesis" *)
by simp

qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



19/20

Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed



20/20

Conclusions

This Lecture
Definitions, theorems, and proofs.
The simplifier.
Readable proofs in Isar.



20/20

Conclusions

This Lecture
Definitions, theorems, and proofs.
The simplifier.
Readable proofs in Isar.



20/20

Conclusions

This Lecture
Definitions, theorems, and proofs.
The simplifier.
Readable proofs in Isar.



20/20

Conclusions

This Lecture
Definitions, theorems, and proofs.
The simplifier.
Readable proofs in Isar.



20/20

Conclusions

This Lecture
Definitions, theorems, and proofs.
The simplifier.
Readable proofs in Isar.


	Writing Properties and Proofs in Isar
	Lemmas and Theorems
	Equational Proofs with the Simplifier
	Readable Proofs with Isar

