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Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set
@ Any value x :: Tis an element of the type’s universe x € UNIV.
@ All HOL types have at least one element, hence
dz.x € UNIV UNIV_witness
@ Types are like maximal sets, the largest set of well-typed members.

@ (UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.
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« ¢ ) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"
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« ¢ ) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
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reAl'FzeB '-ACB 'FBCA

© ¢ i) TFACH subsetI I'FA=2R

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
next
fix x :: ocean
assume "x € {Atlantic, Pacific, Indian, Arctic}"
show "x € UNIV"
by (fact UNIV_I)
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equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
next
fix x :: ocean
assume "x € {Atlantic, Pacific, Indian, Arctic}"
show "x € UNIV"
by (fact UNIV_I)
ged
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Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:

typedef NT = "A :: T set"by ...
@ Requires a proof that the provided set A is non-empty.
o typedef is used internally by both datatype and record.
@ Generates conversion functions:

Abs NT :: T = NT

Rep NT :: NT = T.
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typedef NT = "A :: T set" by ...

Original Type (T)

New Type (NT)
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Conversion Functions

typedef NT = "A :: T set" by
@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.
@ They satisfy:
Abs NT (Rep NTz) ==z

z € A= Rep_NT (Abs_NTz) =z

Rep NTz € A
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Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.
@ typedef creates from_natl :: natl = nat.

@ That converts a non-zero nat to a nat.

@ And to natl :: nat = natl the does the converse, such that

X >0 — from_natl (to_natl x) = x (to_natl_inverse)
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Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

lemma plusl:
assumes "x > 0" "y > 0"
shows "plusl (to_natl x) (to_natl y) = to_natl (x+y)"
by (simp add: assms plusl_def to_natl_inverse)

@ This process is automated with the lifting package (out of scope).
@ But hold on, what is value of to_ nat1(0)?

@ This is underspecified, and so HOL assigns an arbitrary value.
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Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex::T.Puxalsowrittenas SOME xz :: T. Px J

Hilbert’'s choice: pick a value = :: T such that P x holds.

Indefinite article in natural language: “a cat sitting on my roof”.

k= (ex.z €{0,1,2,3}): could be 0, 1, 2, or 3.

But we can infer general properties like £ > 0 and & < 3.

Relies on axiom of choice: can always pick a single element from a set.

If no such = exists, return an arbitrary value of type 7' (e.g. € x. Fulse).

Uncomputable in general, e.g. whatis ez :: real. © x © = 27.

Lets us deal with partiality, e.g. to_nat1(0), 2/0, and /—1 (for R).
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@ Here’s an introduction rule for indefinite description:

Introduction Rule
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Example
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@ Here’s an introduction rule for indefinite description:

Introduction Rule
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@ We need to show some ¢ exists satisfying P to reason about «.

Example
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Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q@Z(gﬁi)l)—) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example
T-0e{0,1,2,3} ye{0,1,2,3,T+y<3
'k (ex.z €{0,1,2,3}) <3

@ Very rarely need to reason about description operators direcily.
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Example
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Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)

show "(0::nat) < 1" by simp
next

fix x :: nat

assume "x < 1"
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Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
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vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value = described by P.
@ Like definite article in natural language: “the cat sitting on my roof”.

@ Meaningful only when there is precisely one = satisfying P.

Introduction Rule
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@ Types and sets seem quite similar. Why have both?
"a setvs.PA,’a x ’bvs. A x Betc.

@ Types resolve problems in naive set theory.

@ Russell’s paradox:

Let R={z |z ¢ z} then R € R < R ¢ R inconsistent!.
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Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.

@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

@ But no equivalents for types.

@ Type checking = :: 7" is decidable, but = € A requires proof.

@ In general, types improve automation by enforcing specific patterns.

@ Conclusion: We need both. It takes experience to know which to use.
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This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.
@ Description operators.
@ Benefits and limitations of types.

Next Lecture
@ Automation and sledghammer.
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