» The Isar Proof Language #

Simon Foster Jim Woodcock
University of York

16th August 2022



Overview

0 Writing Properties and Proofs in Isar
@ Lemmas and Theorems
e Equational Proofs with the Simplifier

@ Readable Proofs with Isar




Outline

0 Writing Properties and Proofs in Isar



Motivation: Proof vs. Testing



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”

@ How do we show these functions are the same:



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”

@ How do we show these functions are the same:
doubleAll = doubleAll’



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”

@ How do we show these functions are the same:
doubleAll = doubleAll’
@ We can test, but only for a finite number of cases.



Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”

@ How do we show these functions are the same:
doubleAll = doubleAll’

@ We can test, but only for a finite number of cases.

@ Formal proof allows us to show it holds for all cases.



Outline

@ Lemmas and Theorems



Facts, Lemmas, and Theorems



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.
@ These can all be used in a proof.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.
@ These can all be used in a proof.
@ Fact: a formula that the theorem prover accepts as true, usually named.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"
@ Produces fact square_def: definitional equation square x = x*x.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square_def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square_def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.
@ Compare with A x. x + y, where x is bound and y is free.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.
@ Compare with A x. x + y, where x is bound and y is free.

@ Recall the contents of a named theorem using the command thm.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.
@ Compare with A x. x + y, where x is bound and y is free.

@ Recall the contents of a named theorem using the command thm.

@ Named facts: created with commands theorem and lemma, and proofs.



Facts, Lemmas, and Theorems

@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.
@ Compare with A x. x + y, where x is bound and y is free.

@ Recall the contents of a named theorem using the command thm.

@ Named facts: created with commands theorem and lemma, and proofs.
°

Lemma: smaller result, generally working towards a theorem.



Specifying Theorems



Specifying Theorems
@ A theorem has this form:

theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"



Specifying Theorems
@ A theorem has this form:

theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".



Specifying Theorems
@ A theorem has this form:
theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".
o fixes: give the free variables in a theorem, i.e. logical place-holders.



Specifying Theorems
@ A theorem has this form:
theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".
o fixes: give the free variables in a theorem, i.e. logical place-holders.
@ assumes: state any assumptions that the goal depends on.



Specifying Theorems
@ A theorem has this form:
theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".
o fixes: give the free variables in a theorem, i.e. logical place-holders.
@ assumes: state any assumptions that the goal depends on.

@ shows: state the goal that we want to prove.



Specifying Theorems
@ A theorem has this form:
theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".
o fixes: give the free variables in a theorem, i.e. logical place-holders.
@ assumes: state any assumptions that the goal depends on.
@ shows: state the goal that we want to prove.
@ Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"



One-Line Proofs



One-Line Proofs

@ Equations and basic facts can be given to the simplifier.



One-Line Proofs

@ Equations and basic facts can be given to the simplifier.

@ Increases automation of equational proofs.



One-Line Proofs

@ Equations and basic facts can be given to the simplifier.
@ Increases automation of equational proofs.

@ Often lets us prove a theorem in one line using by command.



One-Line Proofs

@ Equations and basic facts can be given to the simplifier.
@ Increases automation of equational proofs.

@ Often lets us prove a theorem in one line using by command.

@ Example
theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)



One-Line Proofs

@ Equations and basic facts can be given to the simplifier.
@ Increases automation of equational proofs.
@ Often lets us prove a theorem in one line using by command.

@ Example

theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

@ Both x and y are free variables that can be instantiated with any value.



One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.



One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.



Outline

e Equational Proofs with the Simplifier



The Simplifier



The Simplifier

@ Powerful proof tactic automating equational reduction of terms.



The Simplifier

@ Powerful proof tactic automating equational reduction of terms.

@ Uses a form of fact called a simplification rule to rewrite the goal.



The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.



The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.
@ Rules application repeated until no more simplifications are possible.

Example
v/ x+0=x




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example

v x+0=x
vV x—x=0




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example

v x+0=x v/ 1+2=3
vV x—x=0




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example

v/ x+0=x / 1+2=3
v/ x—x=0 XX+y=y+x




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example

v/ x+0=x / 1+2=3
v/ x—x=0 XX+y=y+x




The Simplifier

@ Powerful proof tactic automating equational reduction of terms.
@ Uses a form of fact called a simplification rule to rewrite the goal.

@ Rules application repeated until no more simplifications are possible.

Example
v/ x+0=x / 1+2=3
v x—x=0 XX+y=y+x

@ LHS should be “simpler” than RHS (not enforced).



The Simplifier

Powerful proof tactic automating equational reduction of terms.

()

Uses a form of fact called a simplification rule to rewrite the goal.

()

Rules application repeated until no more simplifications are possible.

Example

vV x+0=x v/ 1+2=3
v x—x=0 XX+y=y+x

()

LHS should be “simpler” than RHS (not enforced).

®

Failure to ensure genuine simplification may lead to infinite rewrite loop.



Applying the Simplifier



Applying the Simplifier

@ Use simp or (simp add: thms) and (simp only: thms).



Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.



Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.
@ theorem attributes allow us to provide hints to automated proof tactics.



Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.
@ theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes




Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.
@ theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythml [simp]: "x + 0 = x"




Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.

@ theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)

theorem mythml [simp]: "x + 0 = x"

(* Add proved rule as simplification ¥*)
declare mythm2 [simp]




Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.
@ theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythml [simp]: "x + 0 = x"

(* Add proved rule as simplification ¥*)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]




Theorem Library



Theorem Library

@ HOL contains a large library of arithmetic theorems.



Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.



Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems




Theorem Library
@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems
a+0=a (add_0®_right)




Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.
Arithmetic Theorems

a+0=a (add_0®_right)
at+b=>b+a (add_commute)




Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems

at+0=a (add_0_right)
at+b=>b+a (add_commute)
ax0=0 (mult_@_right)




Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems

at+0=a (add_0_right)
at+b=>b+a (add_commute)
ax0=0 (mult_@_right)

)

ax(b+c)=axb+axc (distrib_left




Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems

at+0=a
at+tb=>b+a
ax0=0

ax(b+c)=axb+axc
(a+b)xc=axc+bxc

(add_0_right
(add_commute
(mult_@_right
(distrib_left
(distrib_right

)
)
)
)
)




Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems
at+0=a (add_0_right)
at+b=>b+a (add_commute)
ax0=0 (mult_@_right)
ax(b+c)=axb+axc (distrib_left)
(a+b)xc=axc+bxc (distrib_right)

v

@ Command find_theorems searches for theorems matching pattern.



Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems
at+0=a (add_0_right)
at+b=>b+a (add_commute)
ax0=0 (mult_@_right)
ax(b+c)=axb+axc (distrib_left)
(a+b)xc=axc+bxc (distrib_right)

v

@ Command find_theorems searches for theorems matching pattern.
@ “find_theorems "(+)"” recalls all theorems containing plus operator.



theorem square_sum:
"square (X + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (X +vy) = X +vy) * (x +Y) square_def
= x*@X+Y +y*FE+Y) distrib_right

= X *X+X*y+ (y*x+y*y) distrib_left

Right-hand side

square X + square y + 2*x*y = X * X +y *y+2*x*y
X*¥X+y*y+ X+Xx)*y
=x7‘:x+y7‘:y+x~.‘:y+x7‘:y

13/20



theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"

by (simp add: square_def algebra_simps)

Left-hand side




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (X +vy) = X +y) * (x +Yy) square_def




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (x + y)

x+y)* x+y) square_def
X* @X+y)+y* X +y) distrib_right




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (x + y)

x+y)* x+y) square_def
= X*@+y)+y*FE+y) distrib_right
= X*X+X*Fy+y*X+Yy) distrib_left




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square X +y) = X +y) * (x+Y) square_def
X* @X+y)+y* X +y) distrib_right
= X *X+X* y+y* X+Yy) distrib_left

X*X+xX*y+(y*x+y*y) distrib_left




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square X +y) = X +y) * (x+Y) square_def
X* @@X+y)+y*E&E+y) distrib_right
= X *X+X* y+y* X+Yy) distrib_left

X*X+xX*y+(y*x+y*y) distrib_left

Right-hand side




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (x + y)

x+y)* x+y)
X*¥@+y)+y*E+y)
X ¥Xx+4x*y+y* x+y)

g

X*¥X+Xx* y+ yY*x+y*y)

square_def
distrib_right
distrib_left
distrib_left

Right-hand side

square X + square y + 2*x*y = X * x +y *y+ 2%

x“n y




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (x + y)

x+y)* x+y)
X*¥@+y)+y*E+y)
X ¥Xx+4x*y+y* x+y)

g

X*¥X+Xx* y+ yY*x+y*y)

square_def
distrib_right
distrib_left
distrib_left

Right-hand side

square X + square y + 2*x*y

g

X."X+y.":y+2*

g

x“n y

X *XxX+y*y+ X+Xx)*y




theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (X + y) @E+y)*&@+y)
X*@@+y)+y*FE+y)
X:‘:X+X=':y+y-k(x+y)

g

X*¥X+Xx* y+ yY*x+y*y)

square_def
distrib_right
distrib_left
distrib_left

Right-hand side

square X + square y + 2*x*y

g

X."X+y.":y+2*

xv‘:x+y7‘:y+x7‘:

g

x“n y

X *XxX+y*y+ X+Xx)*y

y+x*y




Step-by-step Proofs in Isar



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.
@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.
@ Isar provides a structured language for readable proofs.
@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.

@ Open a proof environment with delimiters proof ... ged.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.
@ Open a proof environment with delimiters proof ... ged.

@ ged: “quod erat demonstrandum”, what was to be shown.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.
@ Open a proof environment with delimiters proof ... ged.

@ ged: “quod erat demonstrandum”, what was to be shown.

@ Intermediate facts proved using the have command.



Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.
@ Open a proof environment with delimiters proof ... ged.

@ ged: “quod erat demonstrandum”, what was to be shown.

@ Intermediate facts proved using the have command.

@ Final fact proved using show.



Outline

° Readable Proofs with Isar



Example: Basic Proof in Isar



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp
from 2 have 3: "square (x + y) = square 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

3 % 3"

ged



Proofs Commands



Proofs Commands

Isar Proof Commands (Selection)




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.

@ then bring the previously proved fact into scope.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = z.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.

@ assume a: "pred" introduce an assumption named a.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.

@ assume a: "pred" introduce an assumption named a.
@ ?thesis schematic variable for current goal predicate.




Example: Basic Proof in Isar (Alternative)



Example: Basic Proof in Isar (Alternative)

lemma square_calc_alt:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have "x + y = 1 + 2"
by (simp add: assms)
then have "x + y = 3"

by simp

hence "square (x + y) = square 3"
by simp

hence "square (x + y) = 3 * 3"

by (simp add: square_def)
then show ?thesis (* or use "thus ?thesis" *)
by simp
ged



Example: Equational Proof in Isar



Example: Equational Proof in Isar

theorem square_sum:
"square (xX+y) = square X + square y + 2%*x*y"



Example: Equational Proof in Isar

theorem square_sum:
"square (xX+y) = square X + square y + 2%*x*y"
proof -



Example: Equational Proof in Isar

theorem square_sum:

"square (xX+y) = square X + square y + 2%*x*y"
proof -

have "square (x + y) = (x +y) * (x + y)"



Example: Equational Proof in Isar

theorem square_sum:
"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)



Example: Equational Proof in Isar

theorem square_sum:
"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)
also



Example: Equational Proof in Isar

theorem square_sum:
"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)
also have "... = (x +vy) * x + (x +y) * y"



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)
also have "... = (x +vy) * x + (x +y) * y"

by (simp add: distrib_left)



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)
also have "... = (x +vy) * x + (x +y) * y"

by (simp add: distrib_left)

" o

also have "... = x * X +y * x + (X *y +y

*y)



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -
have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)
also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)
also have "... = x * X +y * x + (X *y +y

by (simp add: distrib_right)

*y)



Example: Equational Proof in Isar

theorem square_sum:

"Square (x+y) = square X + square y + Z*Xz':y"
proof -
have "square (x + y) = (x +y) * (x + y)"

by
also
by
also
by
also

(simp add: square_def)

have "... = (x +y) * x + (X +y) *y
(simp add: distrib_left)

" o

have "... = x * x +y *x + (x *y +y *

(simp add: distrib_right)

have "... = x * X +y *y +x *y + x ¥



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y *x + (x *y +y ¥
by (simp add: distrib_right)

also have "... = x * X + y *y + X ¥y + x ¥

by

simp



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y *x + (x *y +y ¥
by (simp add: distrib_right)

also have "... = x * X + y *y + X ¥y + x ¥
by simp

also have " = square X + square y + 2 ¥



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y *x + (x *y +y ¥
by (simp add: distrib_right)

also have "... = x * X + y *y + X ¥y + x ¥
by simp

also have "... = square X + square y + 2 ¥

by

(simp add: square_def)



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y *x + (x *y +y ¥
by (simp add: distrib_right)

also have "... = x * X + y *y + X ¥y + x ¥
by simp

also have "... = square X + square y + 2 ¥

by (simp add: square_def)
finally



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y * x + (X * y +
by (simp add: distrib_right)

also have "... = x * X +y *y + X ¥y + X
by simp

also have "... = square X + square y + 2 ¥

by (simp add: square_def)
finally show ?thesis

o
y =



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y * x + (X * y +
by (simp add: distrib_right)

also have "... = x * X +y *y + X ¥y + X
by simp

also have "... = square X + square y + 2 ¥

by (simp add: square_def)
finally show ?thesis

o
y =



Example: Equational Proof in Isar

theorem square_sum:

"square (x+y) = square X + square y + 2*x*y"
proof -

have "square (x + y) = (x +y) * (x + )"
by (simp add: square_def)

also have "... = (x +vy) * x + (x +y) * y"
by (simp add: distrib_left)

also have "... = x * X +y * x + (X * y +
by (simp add: distrib_right)

also have "... = x * X +y *y + X ¥y + X
by simp

also have "... = square X + square y + 2 ¥

by (simp add: square_def)
finally show ?thesis
ged

o
y =



Conclusions



Conclusions

This Lecture




Conclusions

This Lecture
@ Definitions, theorems, and proofs.




Conclusions

This Lecture
@ Definitions, theorems, and proofs.
@ The simplifier.




Conclusions

This Lecture
@ Definitions, theorems, and proofs.
@ The simplifier.
@ Readable proofs in Isar.




	Writing Properties and Proofs in Isar
	Lemmas and Theorems
	Equational Proofs with the Simplifier
	Readable Proofs with Isar

