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Motivation: Proof vs. Testing

Consider two versions of the doubleAll function:

fun doubleAll :: "nat list ⇒ nat list" where
"doubleAll [] = []" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list ⇒ nat list"
where "doubleAll’ = map double"

How do we show these functions are the same:
doubleAll = doubleAll’

We can test, but only for a finite number of cases.
Formal proof allows us to show it holds for all cases.
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Facts, Lemmas, and Theorems

Commands like datatype, definition, and fun provide facts.
These can all be used in a proof.
Fact: a formula that the theorem prover accepts as true, usually named.
print theorems: see facts generated by the previous command.
definition square :: "nat ⇒ nat" where "square x = x*x"

Produces fact square def: definitional equation square x = x*x.
x is a free variable, and it can be instantiated with any value of type nat.
Compare with λ x . x + y , where x is bound and y is free.
Recall the contents of a named theorem using the command thm.
Named facts: created with commands theorem and lemma, and proofs.
Lemma: smaller result, generally working towards a theorem.
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Specifying Theorems
A theorem has this form:
theorem name:
fixes x1 :: T1 ... xn :: T n
assumes a1: "assm1" and a2: "assm2" ...
shows "goal"

Often a simpler form can be used, e.g. theorem n: "goal".
fixes: give the free variables in a theorem, i.e. logical place-holders.
assumes: state any assumptions that the goal depends on.
shows: state the goal that we want to prove.
Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"
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One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.
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The Simplifier

Powerful proof tactic automating equational reduction of terms.

Uses a form of fact called a simplification rule to rewrite the goal.

Rules application repeated until no more simplifications are possible.

Example
3 x + 0 = x

3 x − x = 0

3 1 + 2 = 3

7 x + y = y + x

LHS should be “simpler” than RHS (not enforced).

Failure to ensure genuine simplification may lead to infinite rewrite loop.
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Applying the Simplifier
Use simp or (simp add: thms) and (simp only: thms).
Mark theorems with attribute [simp] to make simplifier aware.
theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythm1 [simp]: "x + 0 = x" ...

(* Add proved rule as simplification *)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]
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Theorem Library

HOL contains a large library of arithmetic theorems.
These help us to reason about the square function.

Arithmetic Theorems
a + 0 = a (add 0 right)

a + b = b + a (add commute)

a ∗ 0 = 0 (mult 0 right)

a ∗ (b + c) = a ∗ b + a ∗ c (distrib left)

(a + b) ∗ c = a ∗ c + b ∗ c (distrib right)

Command find_theorems searches for theorems matching pattern.
“find_theorems "(+)"” recalls all theorems containing plus operator.
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theorem square sum:
"square (x + y) = square x + square y + 2*x*y"
by (simp add: square def algebra simps)

Left-hand side
square (x + y) = (x + y) * (x + y) square def

= x * (x + y) + y * (x + y) distrib right
= x * x + x * y + y * (x + y) distrib left
= x * x + x * y + (y * x + y * y) distrib left

Right-hand side
square x + square y + 2*x*y = x * x + y * y + 2 * x * y

= x * x + y * y + (x + x) * y
= x * x + y * y + x * y + x * y
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Step-by-step Proofs in Isar

Single line proof with by isn’t always possible or desirable.

Isar provides a structured language for readable proofs.

This makes reasoning explicit.

Break down a proof into intermediate steps, combine to prove the goal.

Open a proof environment with delimiters proof ... qed.

qed: “quod erat demonstrandum”, what was to be shown.

Intermediate facts proved using the have command.

Final fact proved using show.
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Example: Basic Proof in Isar
lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have 1: "x + y = 1 + 2"
by (simp add: assms) (* Use the assumptions *)

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y) = 3 * 3"
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

qed
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Proofs Commands

Isar Proof Commands (Selection)
proof ... qed delimiters for a proof block.
show "pred" begin proof to demonstrate a subgoal.
have n: "pred" begin proof of an intermediate fact.
by tactic one line proof by application of tactic.
from n bring an existing named fact into scope for a proof.
then bring the previously proved fact into scope.
also chain two equalities, x = y , y = z ; x = z.
finally final step in a chain of equality facts.
assume a: "pred" introduce an assumption named a.
?thesis schematic variable for current goal predicate.
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Example: Basic Proof in Isar (Alternative)
lemma square_calc_alt:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"

proof -
have "x + y = 1 + 2"
by (simp add: assms)

then have "x + y = 3"
by simp

hence "square (x + y) = square 3"
by simp

hence "square (x + y) = 3 * 3"
by (simp add: square_def)

then show ?thesis (* or use "thus ?thesis" *)
by simp

qed
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Example: Equational Proof in Isar
theorem square_sum:
"square (x+y) = square x + square y + 2*x*y"

proof -
have "square (x + y) = (x + y) * (x + y)"
by (simp add: square_def)

also have "... = (x + y) * x + (x + y) * y"
by (simp add: distrib_left)

also have "... = x * x + y * x + (x * y + y * y)"
by (simp add: distrib_right)

also have "... = x * x + y * y + x * y + x * y"
by simp

also have "... = square x + square y + 2 * x * y"
by (simp add: square_def)

finally show ?thesis .
qed
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