
1/19

Automating Natural Deduction 2

Simon Foster Jim Woodcock
University of York

18th August 2022



2/19

Overview

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



3/19

Outline

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



4/19

Proof with Quantifiers

Universal and existential quantifiers:

∀ x . ∃ y .P(x , y)

Reasoning with quantifiers is intrinsically hard.

We often need to guide a proof.

Even powerful tools like blast and auto often stop at quantifiers.

They usually highlight the more creative aspects needed for a proof.

Particularly important for inductive and set theoretic proofs.

First, we need to consider the role of logical variables in proof.



5/19

Outline

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



6/19

Free and Fixed Variables in Theorem Specifications
Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

Example

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

Example
lemma nat min: "J

∧
x::nat. y ≤ x K =⇒ y = 0"

During proof x (bound) can take an arbitary value, but y (free) is fixed.



6/19

Free and Fixed Variables in Theorem Specifications
Example
theorem square_greater_zero:
fixes x :: nat assumes "x > 0" shows "square x > 0"

Make them arbitrary but fixed during the proof.
All we know about fixed variables is their type and assumptions.
Analogy: Fixed variables and assumptions inputs. Conclusion output.
Captured by meta-quantification in the proof state.∧
x .P(x ) means P is valid for any value x .

Example
lemma nat min: "J

∧
x::nat. y ≤ x K =⇒ y = 0"

During proof x (bound) can take an arbitary value, but y (free) is fixed.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



7/19

Schematic Variables
?x : schematic variable (“unknown”) in term that can be instantiated.

When a theorem is proved, each free variable becomes a schematic.

Example
square greater zero: 0 < ?x =⇒ 0 < square ?x
nat min:

∧
x. ?y ≤ x =⇒ ?y = 0

We can instantiate a schematic variable x manually in several ways:

thmname[where x="val"] and (rule tac x="val" in thmname).

square greater zero[where x="3"] = (0 < 3 =⇒ 0 < square 3).

Schematic variables can be shared among subgoals in the proof state.

Fixed and schematic variables important for quantifier deduction rules.



8/19

Outline

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



9/19

Quantifier Deduction Rules
Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers
Γ ` P(x )

x /∈ fv(Γ) allI
Γ ` ∀ a.P(a)

P(t),Γ ` R
allE∀ a.P(a),Γ ` R

Γ ` P(t)
exI

Γ ` ∃ a.P(a)

P(x ),Γ ` Q
x /∈ fv(Γ,Q) exE∃ a.P(a),Γ ` Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



9/19

Quantifier Deduction Rules

Quantifiers∧
x .P x

allI∀ a.P a

∀ a.P a P t =⇒ R
allE

R

∀ a.P a
spec

P t

P t exI∃ a.P a
∃ a.P a

∧
x .P x =⇒ Q

exE
Q

Note that P is a polymorphic predicate of type ’a ⇒ bool.
For allI, demonstrate P x for an arbitrary but fixed value x .
For exI, demonstrate P x for a particular value t (that we supply).
For allE, assume P x holds for a particular value t .
For exE, assume P x holds for an arbitrary but fixed value x .



10/19

Outline

1 Universal and Existential Quantifiers

2 Fixed and Schematic Variables

3 Deduction Rules

4 Isar Proofs with Quantifiers



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y

allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1
y ∈ N ` ∃ a ∈ N. a > y

allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



11/19

Example: Supplying a Witness (Explicit)
Aim is to prove ∀ y :: nat . ∃ x . x > y .

Natural Deduction Proof
arithmetic

y ∈ N ` y + 1 > y
exI, a = y + 1

y ∈ N ` ∃ a ∈ N. a > y
allI` ∀ b ∈ N. ∃ a ∈ N. a > b

Isabelle Proof
lemma "∀ b::nat. ∃ a. a > b"
apply (rule allI)
apply (rename_tac y)
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done

The quantifier for y isn’t necessary—free variables are universal:

lemma "∃ x::nat. x > y"
apply (rule_tac x="y+1" in exI)
apply (fact less_add_one)
done



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.
Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.
Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



12/19

Example: Supplying a Witness (Implicit)
Invoking exI without a witness leads to creation of a schematic variable.

lemma "∃ x::nat. 0 < x ∧ x < 10"
proof (rule exI) (* Goal: 0 < ?x ∧ ?x < 10 *)
let ?v = "5::nat"
(* Supply witness and specialise goal *)
show "0 < ?v ∧ ?v < 10"
proof (rule conjI)
show "0 < ?v" by simp
show "?v < 10" by simp

qed
qed

Schematic variables shared by subgoals: simultaneous instantiation.



13/19

Example: Fixed Variables in Isar



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI
` x mod 2 6= 0 −→ x mod 2 = 1

allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



13/19

Example: Fixed Variables in Isar

Natural Deduction Proof
· · ·

x mod 2 6= 0 ` x mod 2 = 1
impI` x mod 2 6= 0 −→ x mod 2 = 1
allI` ∀ n. n mod 2 6= 0 −→ n mod 2 = 1

Isar Proof
lemma "∀ n::int. n mod 2 6= 0 −→ n mod 2 = 1"
proof (rule allI, rule impI)
fix x::int
assume "x mod 2 6= 0"
thus "x mod 2 = 1"
by (simp only: not_mod_2_eq_0_eq_1)

qed



14/19

Example: Syllogism in Isar



14/19

Example: Syllogism in Isar
Example



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



14/19

Example: Syllogism in Isar
Example
lemma Socrates_syllogism:
assumes "∀ x. man(x) −→ mortal(x)" "man(Socrates)"
shows "mortal(Socrates)"

proof -
(* Once proved, f contains a schematic variable *)
from assms(1) have f: "

∧
x. man(x) =⇒ mortal(x)"

by simp
(* Instantiate fact f *)
have "man(Socrates) =⇒ mortal(Socrates)"
by (rule f[where x="Socrates"])

with assms(2) show "mortal(Socrates)"
by simp

qed



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧
n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



15/19

Existential Elimination in Isar Proofs

We can introduce existential properties from assumptions.

obtain x :: T where pn: "P x"...

Creates a fixed local variable x that satisfies P

Provided some such x exists.

The properties of x (e.g. pn) become available as local assumptions.

Requires that we prove (
∧

n.P n =⇒ Q) =⇒ Q for arbitrary Q .

This corresponds to the existential elimination rule exE.



16/19

Obtain Example: Even Numbers
Natural Deduction Proof

– asm
x mod 2 = 0, x = 2 ∗ y ` x = 2 ∗ y

exI
x mod 2 = 0, x = 2 ∗ y ` (∃ b. x = 2 ∗ b)

exE
x mod 2 = 0 ` (∃ b. x = 2 ∗ b)

allI, impI
` ∀ a. a mod 2 = 0 −→ (∃ b. a = 2 ∗ b)

lemma "∀ a::nat. a mod 2 = 0 −→ (∃ b. a = 2 * b)"
proof (rule allI, rule impI)
fix x :: nat
assume "x mod 2 = 0"
then obtain y where "x = 2 * y" using mod_eq_0D by blast
thus "∃ b. x = 2 * b"
by (rule_tac x="y" in exI, assumption)

qed



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.
Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.
Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



17/19

Obtain Example: No greatest natural number
notI: (?P =⇒ False) =⇒ ¬ ?P.

lemma no_ge_nat: "@ y::nat. ∀ x. y ≥ x"
proof (rule notI)
assume "∃ y::nat. ∀x. y ≥ x"
(* Obtain a number n greater than any number x *)
then obtain n::nat where n: "∀ x. n ≥ x" by auto
(* Prove that Suc n is greater than n *)
have 1: "Suc n > n" by (fact Nat.lessI)
(* Prove n is greater than or equal to Suc n *)
from n have 2: "n ≥ Suc n" by auto
(* Contradiction *)
from 1 2 show False by auto

qed

Facts 1 and 2 are contradictory, so no such y can exist.



18/19

Example: One Point Rule



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



18/19

Example: One Point Rule

lemma one_point: "(∃ x. x = v ∧ P x) ←→ P v"
proof (rule iffI)
assume "(∃ x. x = v ∧ P x)" thus "P v"
by (erule_tac exE, simp)

next
assume a: "P v" show "(∃ x. x = v ∧ P x)"
(* Subgoals: ?x = v and P ?x *)
proof (rule_tac exI, rule_tac conjI)
(* This specialises ?x = v *)
show "v = v" by (rule refl)

next
show "P v" by (rule a)

qed
qed



19/19

Conclusion



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.

Next Lecture
Sets and types.



19/19

Conclusion

This Lecture
Fixed and schematic variables.
Natural deduction rules for quantifiers.
Reasoning with universal and existential quantifiers.

Next Lecture
Sets and types.


	Universal and Existential Quantifiers
	Fixed and Schematic Variables 
	Deduction Rules
	Isar Proofs with Quantifiers

