» Automating Natural Deduction 1

Simon Foster Jim Woodcock
University of York

18th August 2022

Overview

@ Low-Level Proof Scripts
@ Natural Deduction Rules for Propositional Calculus

Q Automation with the Classical Reasoner

&
39

Outline

@ Low-Level Proof Scripts

Motivation

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.
@ You need to understand the use of low-level proof scripts.

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.
@ You need to understand the use of low-level proof scripts.

Proof Script

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.
@ You need to understand the use of low-level proof scripts.

Proof Script
lemma "P — (P A (P V Q)"

Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.
@ You need to understand the use of low-level proof scripts.

Proof Script

lemma "P — (P A (P V Q)"
apply (rule conjI)
apply assumption
apply (rule disjIl)
apply assumption
done

Proof Scripts and Tactics

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.
@ Proof script: sequence of commands acting on a proof state.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.
@ Proof script: sequence of commands acting on a proof state.
@ Proof state: subgoals.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture

(goal) » Proof
State

proof
tactic(s)
,,,,,, ~—— P No subgoals!

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture proof
(goal) tactic(s)
.| Proof [factCli Proof | factc I Proof | ™ = No subgoals!

State

@ Proof script uses the apply keyword to execute a tactic.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture proof
(goal) tactic(s)
.| Proof [factCli Proof | factc I Proof | ™ = No subgoals!

State

@ Proof script uses the apply keyword to execute a tactic.
@ Tactics can fail if the subgoal is in the wrong form.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture proof
(goal) tactic(s)
.| Proof [factCli Proof | factc I Proof | ™ = No subgoals!

State

@ Proof script uses the apply keyword to execute a tactic.
@ Tactics can fail if the subgoal is in the wrong form.
@ Proof is complete once all subgoals are eliminated.

Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture proof
(goal) tactic(s)
.| Proof [factCli Proof | factc I Proof | ™ = No subgoals!

State

@ Proof script uses the apply keyword to execute a tactic.
@ Tactics can fail if the subgoal is in the wrong form.

@ Proof is complete once all subgoals are eliminated.

@ Script terminated with done (cf. ged).

Proof State

Proof State

@ The proof state consists of n subgoals.

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.

Proof State

@ The proof state consists of n subgoals.

@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.

@ P;---P,is a set of hypotheses — can be used to prove the subgoal.

Proof State

@ The proof state consists of n subgoals.

@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.

@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.

Proof State

@ The proof state consists of n subgoals.

@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.

@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.

@ assumes P1 ... Pn shows Q creates a single initial subgoal:

Proof State

@ The proof state consists of n subgoals.

@ The aim is to discharge (remove by proof) all remaining subgoals.

@ Subgoals have the form [Py; --- ; P, — Q.

@ P;---P,is a set of hypotheses — can be used to prove the subgoal.

@ Qs the conclusion of the subgoal; the thing to be proved.

@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -5 Pl = Q

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -5 Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -5 Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).
@ We can manipulate a subgoal in several ways:

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -+ Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).
@ We can manipulate a subgoal in several ways:
@ Split into several additional subgoals by introduction or elimination.

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -5 Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).
@ We can manipulate a subgoal in several ways:
@ Split into several additional subgoals by introduction or elimination.
@ Manipulate the assumptions or insert further ones, e.g. from theorems.

Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -+ Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).
@ We can manipulate a subgoal in several ways:
@ Split into several additional subgoals by introduction or elimination.
@ Manipulate the assumptions or insert further ones, e.g. from theorems.
@ Discharge trivial subgoals, e.g. True or P = P using assumption.

Outline

e Natural Deduction Rules for Propositional Calculus

Natural Deduction

Natural Deduction
Natural Deduction Rules

Natural Deduction
Natural Deduction Rules
'-Py TFPy---TF P,

r-aQ

Natural Deduction
Natural Deduction Rules

TP TFP---THP,
TFQ

@ Meaning: a proof of the conclusion Q follows from premises P; - - - P,.

Natural Deduction
Natural Deduction Rules

TP, THP---THP,
TFQ

@ Meaning: a proof of the conclusion Q follows from premises P - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

Natural Deduction
Natural Deduction Rules

TP, THP---THP,
TFQ

@ Meaning: a proof of the conclusion Q follows from premises P - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

Example (Syllogism)

Natural Deduction
Natural Deduction Rules

I'-P, THP---THP,
TFQ

@ Meaning: a proof of the conclusion Q follows from premises P - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

4

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Natural Deduction
Natural Deduction Rules

I'-P, THP---THP,
I'FQ

@ Meaning: a proof of the conclusion Q follows from premises P - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

4

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Two main kinds of deduction rules:

Natural Deduction
Natural Deduction Rules

'-P, THP---THP,
T'FQ

@ Meaning: a proof of the conclusion Q follows from premises P; - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

4

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Two main kinds of deduction rules:
@ Introduction rules (rule tactic): backwards reasoning.

Natural Deduction
Natural Deduction Rules

'-P, THP---THP,
T'FQ

@ Meaning: a proof of the conclusion Q follows from premises P; - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Two main kinds of deduction rules:
@ Introduction rules (rule tactic): backwards reasoning.
@ Elimination rules (erule tactic): forwards reasoning.

Introduction Rules

Introduction Rules

@ Question: how do we prove the conclusion P?

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P,, based on current subgoal’s conclusion.

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules

P THQ

Trprq coml

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules

P THQ

TEPAQ Truel

conjI

' True

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules

P THQ
TFPAQ

TP
T-FPVQ

conjI Truel

' True

disjIl

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules
I'-pP I'-Q . -
TEPAQ conjI TF True Truel
P .. I'-Q . .
TFpva U8l Frp, g Hsil2 |

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P,, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules
I'-pP I'-Q . -
TEPAQ conjI TF True Truel
P .. I'-Q . .
TFpva U8l Frp, g Hsil2 |

@ Invoke introduction rules using the rule tactic, e.g. apply(rule conjI).

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P,, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules
I'-pP I'-Q . -
TEPAQ conjI TF True Truel
P .. I'-Q . .
TFpva U8l Frp, g Hsil2 |

@ Invoke introduction rules using the rule tactic, e.g. apply(rule conjI).
@ Matches subgoal’s conclusion, copies any hypotheses to new subgoals.

Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P,, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules
TP THQ . _
TrPAQ@ oMY T fue el
- TFQ ...
Trpyvg W8Il Frpy g disil2

v

@ Invoke introduction rules using the rule tactic, e.g. apply(rule conjI).
@ Matches subgoal’s conclusion, copies any hypotheses to new subgoals.
@ Most rules are safe introduction rules, but disjI1 and disjI2 aren’t.

Example: Proof by Introduction

Example: Proof by Introduction

Natural Deduction Proof

Proof Script

Example: Proof by Introduction

Natural Deduction Proof Proof Script
lemma "P = (P A (P V Q)"

PEPA(PVQ)

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"
apply (rule conjI)

conjI

PEPA(PVQ)

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"
apply (rule conjI)
PHP PPV Q

j I
PrPA(PVQ) oM

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"
apply (rule conjI)

* Subgoal 1 *)

PFP PEPVQ os1 C

PHPA(PVQ)

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"

i apply (rule conjI)

PrP PPV Q conjI (* Subgoal 1 *)
PEPA(PV Q) apply assumption

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"
B apply (rule conjI)
PrP PPV Q conjI (* Subgoal 1 *)
PEPA(PV Q) apply assumption

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"

- asm — apply (rule conjI)
PrP PPV Q conjI (* Subgoal 1 *)

PEPA(PV Q) apply assumption
(* Subgoal 2 *)

Example: Proof by Introduction

Natural Deduction Proof Proof Script
lemma "P =—= (P A (P V Q)"
B disiIl apply (rule conjI)
PP PEPVQ (oi7 (* Subgoal 1 *)

PEPA(PVQ) apply assumption
(* Subgoal 2 *)
apply (rule disjIl)

Example: Proof by Introduction

Natural Deduction Proof Proof Script

lemma "P = (P A (P V Q)"
— PFP P apply (rule conjI)
asm ————disjIl
PFP PFPVQ C(lmg.l (* Subgoal 1 *)
P-PA(PVQ) apply assumption
(* Subgoal 2 *)
apply (rule disjIl)

Example: Proof by Introduction

Natural Deduction Proof

asm
— Prp 2 .
I ngﬁl
PFPA(PVQ)

Proof Script

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)
apply assumption

Example: Proof by Introduction

Natural Deduction Proof

asm
— Prp 2 .
I ngﬁl
PFPA(PVQ)

Proof Script

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)
apply assumption

Example: Proof by Introduction

Natural Deduction Proof

asm
— Prp 2 .
I ngﬁl
PFPA(PVQ)

Proof Script

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)
apply assumption
done

Example: Proof by Introduction (Again)

Example: Proof by Introduction (Again)

Proof State

Example: Proof by Introduction (Again)

Proof State
Q@ P—= (PA(PVQ)).

lemma "P — (P A (P V Q)"

Example: Proof by Introduction (Again)

Proof State
QP=P
Q@ P— PVAQ.

lemma "P — (P A (P V Q)"
apply (rule conjI)

Example: Proof by Introduction (Again)

Proof State
QP=P
Q@ P— PVAQ.

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)

Example: Proof by Introduction (Again)

Proof State
Q@ P— PVAQ

lemma "P = (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption

Example: Proof by Introduction (Again)

Proof State
Q@ P— PVAQ

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)

Example: Proof by Introduction (Again)

Proof State
QP—= P

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)

Example: Proof by Introduction (Again)

Proof State
No subgoals!

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)
apply assumption

Example: Proof by Introduction (Again)

Proof State

lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjIl)
apply assumption
done

More Introduction Rules

More Introduction Rules

Introduction Rules

More Introduction Rules

Introduction Rules
PTHQ

impT
TrP—aQq "

More Introduction Rules

Introduction Rules

PTFQ . TFP—5Q TFQ—P,
TP —>aq " TP+ Q

ffT

More Introduction Rules

Introduction Rules

P.THQ 'EFP— Q r-rQ—~P
mpIl

TFP_——SaQ - TFP+sQ e

iffI

'Et=t

More Introduction Rules

Introduction Rules

PIFQ .~ TFP-—5Q TFQ-—P
TP —>aq " TP+ Q

iffI refl

'Et=t

lemma "P — (P A (True = True))"

More Introduction Rules

Introduction Rules

P.THQ 'EFP— Q r-rQ—~P
mpIl

TFP_——SaQ - TFP+sQ e

iffI

'Et=t

lemma "P — (P A (True = True))"
apply (rule impI)

More Introduction Rules

Introduction Rules

P.THQ 'EFP— Q r-rQ—~P
mpIl

TFP_——SaQ - TFP+sQ e

iffI

'Et=t

lemma "P — (P A (True = True))"
apply (rule impI) (¥ P = (P A (True = True)) *)

More Introduction Rules

Introduction Rules

P.THQ 'EFP— Q r-rQ—~P
mpIl

TFP_——SaQ - TFP+sQ e

iffI

'Et=t

lemma "P — (P A (True = True))"
apply (rule impI) (¥ P = (P A (True = True)) *)
apply (rule conjI)

More Introduction Rules

Introduction Rules

PTFQ . ~TFP—Q THFQ-—P .
TP —>aq " TP+ Q

Tri—¢ et

lemma "P —s (P A (True = True))"
apply (rule impI) (¥ P = (P A (True = True)) *)
apply (rule conjI) (¥ P = P and P = (True = True)) *)

More Introduction Rules

Introduction Rules

PIFQ .~ TFP-—5Q TFQ-—P
TP —>aq " TP+ Q

iffI refl

'Et=t

lemma "P — (P A (True = True))"

apply (rule impI) (¥ P = (P A (True = True)) *)

apply (rule conjI) (* P = P and P = (True = True)) *)
apply (assumption)

More Introduction Rules

Introduction Rules

PTHQ . 'EFP— Q 'FQ— P . -
FI—P—)lepI TFP<s O iffI —Fl—t:treﬂ

lemma "P — (P A (True = True))"

apply (rule impI) (¥ P = (P A (True = True)) *)

apply (rule conjI) (* P = P and P = (True = True)) *)
apply (assumption) (¥ P = (True = True)) ¥)

More Introduction Rules

Introduction Rules

PTHQ . 'EFP— Q 'FQ— P . -
FI—P—)lepI TFP<s O iffI —Fl—t:treﬂ

lemma "P — (P A (True = True))"

apply (rule impI) (¥ P = (P A (True = True)) *)

apply (rule conjI) (* P = P and P = (True = True)) *)
apply (assumption) (¥ P = (True = True)) ¥)

apply (rule refl)

More Introduction Rules

Introduction Rules

PIFQ .~ TFP-—5Q TFQ-—P
TP —>aq " TP+ Q

iffI refl

'Et=t

lemma "P — (P A (True = True))"

apply (rule impI) (¥ P = (P A (True = True)) *)

apply (rule conjI) (* P = P and P = (True = True)) *)
apply (assumption) (* P = (True = True)) *)

apply (rule refl)

done

Elimination Rules

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

P,Q.T+ R

PAQTFR OME

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

P.QTFR . PTFR QTFR
PAQTLFR oM PVQTFR

disjE

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus
P.Q,T+R v PTHFR QTFR
PAQTLFR oM PVQTFR

r'-P QTFR
P—QTlFR

disjE

impE

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR _ PR __QUER .
PAQTLFR oM PVQTFR]
I'FP QTFR P—0QQ-—PTFR .

impE iffE

P—QTFR P« QTFR

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

PQTFR _ . PTFR _QTFHR . .
PrQTFR oM PVQTFR !

I'cP QOTFR , P—QQ—PTFR .
impE iffE

P—QTFR P« QTFR

PAQ [P, Q=R
R

conjE

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR . PTFR _QTER .. .
PrQTFR oM PVQTFR !
kP QTFR, = P —QQPIER
P—QrrR ™ P«sarrr E

PAnQ [P, Q=R . PvQ P=—R Q=—R
= conjE R

disjE

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR . PTFR _QTER .. .
PrQTFR oM PVQTFR !
kP QTFR, = P —QQPIER
P—QrrR ™ P«sarrr E
P A P; Q] — R ..
Q LP; 0] conjE 2y & P:’;R L=l disjE

R
P— Q g Q:>RimpE

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

P.QT+R . PR __QUER .
PAQTLFR oM PVQTFR]
r-P__QItR . . P—>QQPIER
PQrrRr ™ P« QTlFR L
P A = — R ..

Q P, Ql conjE PV Q P— R Q— R disiE

R R
. P+— Q P—Q Q— Pl=—R
P— Q g Q—=—R ST [. ; l By

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR . PTFR _QTER .. .
PrQTFR oM PVQTFR !
kP QTFR, = P —QQPIER
PQrrRr ™ P« QTlFR Lk
P A P:. Ql = R ..
Q P, Ql conjE PV Q P— R Q:>RdlsJE
R R
. P+— Q P—Q Q— Pl=—R
P— Q g Q—=—R ST [. ; l By

@ Elimination rules use erule tactical apply (erule conjE).

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

P.QTFR . PR __QUER .
PAQTLFR oM PVQTFR]
r-P__QItR . P—>QQPIER
P—QrrR ™ P«sarrr E
P A P; R .

R R
. P+— Q P—Q Q—Pl=—R
P— Q g Q— R ST I . ; | By

v

@ Elimination rules use erule tactical apply (erule conjE).
@ Find first hypothesis matching first premise of elimination rule.

Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR PR __QUER .
PAQTLFR oM PVQTFR]
L-P _QUFR .. P—QQ—PIFR
P—QrrR ™ P—QTlTFR 1
PAQ P; Q] — R ..
LP; 0] conjE 2y & P:’;R Q:>Rd15JE

P—Q [P—Q Q— P]=R
R

R
P— Q g Q:>RimpE

iffE

v

@ Elimination rules use erule tactical apply (erule conjE).
@ Find first hypothesis matching first premise of elimination rule.
@ Replace subgoal with remaining premises: [P; Q] — R.

Example: Proof by Elimination (1)

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

PA(P— Q) — Q

Proof Script

lemma "P A (P — Q) — Q"

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

PAP— Q) — Q

impI

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

[(P— Q); Pl = Q
PANP— Q) = Q
PAN(P— Q) — Q

conjE
impI

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

impE

[(P— Q); Pl = Q
PA(P— Q) = Q
PANP— Q) —Q

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

P=—P [P, Q= Q .
[((P— Q); Pl = Q
PANP—Q = Q .
PANP— Q) —Q

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

=0

IP; Q] = Q .

[(P—Q); Pl= Q

PAP— Q) = Q ,

PAP— Q) — Q

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

P—P

IP; Q] = Q .

[(P—Q); Pl= Q

PAP— Q) = Q ,

PAP— Q) — Q

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

P—P

[P.Q — q ="

[(P—Q); Pl= Q

PAP— Q) = Q ,

PAP— Q) — Q

impE

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply assumption

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

P—P

. Q —q ="

[(P—Q); Pl= Q

PAP— Q) = Q ,

PAP— Q) — Q

impE

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply assumption

Example: Proof by Elimination (1)

How do we prove P A (P — Q) — Q?

Natural Deduction Proof

P—P

. Q —q ="

[(P—Q); Pl= Q

PAP— Q) = Q ,

PAP— Q) — Q

impE

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply assumption
done

Example: Proof by Elimination (2): (P A P) <— P

Example: Proof by Elimination (2): (P A P) <— P

(PAP)+— P

Proof Script

lemma "(P A P) «— P"

Example: Proof by Elimination (2): (P A P) <— P

iffI

(PAP) «— P

Proof Script

lemma "(P A P) «<— P"
apply (rule iffI)

Example: Proof by Elimination (2): (P A P) <— P

PAP=P P—=PAP .

(PAP)«— P £E1

Proof Script

lemma "(P A P) «— P"
apply (rule iffI)

Example: Proof by Elimination (2): (P A P) <— P

conjE

(PAP)+— P

PNP=—P

P—PAP i T

Proof Script

lemma "(P A P) <— P"
apply (rule iffI)
apply (erule conjE)

Example: Proof by Elimination (2): (P A P) <— P

[P, Pl=P
PANP—=— P

conjE

(PAP)+— P

P—PAP i T

Proof Script

lemma "(P A P) <— P"
apply (rule iffI)
apply (erule conjE)

Example: Proof by Elimination (2): (P A P) <— P

asm
conjE

(PAP) «— P

[P P[—= P
PAP— P

P—PAP i EET

Proof Script

lemma "(P A P) +— P"
apply (rule iffI)

apply (erule conjE)
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

asm
conjE

(PAP) «— P

[P P[—= P
PAP— P

P—PAP i EET

Proof Script

lemma "(P A P) +— P"
apply (rule iffI)

apply (erule conjE)
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

[P, P] — P 51 _
PAP— p cOniE P—pPArP ... coml
(PAP) <« P 1££]
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)

apply (erule conjE)
apply assumption
apply (rule conjI)

Example: Proof by Elimination (2): (P A P) <— P

asm
PP — p _
[[F’/\ PH:> peonjE g BB " conjl
(PAP) <« P 1££]
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)

apply (erule conjE)
apply assumption
apply (rule conjI)

Example: Proof by Elimination (2): (P A P) <— P

asm -
[P Pl=P g P=P st p__p cons I
PAP—P P— PAP .
(PAP) <« P 1££]
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

asm I
[P Pl=P g P=P st p__p cons I
PAP—P P— PAP .
(PAP) <« P 1££]
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

asm

P. P — P s pasm 55— asm
[EDAPH:P conji E—= 55— conjl
(PAP) <« P 151
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

asm

P. P — P s pasm 55— asm
[EDAPH:P conji E—= 5 conj1
(PAP) < P 151
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption
apply assumption

Example: Proof by Elimination (2): (P A P) <— P

asm — - -
P Pl=P g P=P " P—P
PAP—P P—PAP
(PAP) < P 1££1
Proof Script

lemma "(P A P) +— P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption
apply assumption
done

Outline

© Automation with the Classical Reasoner

Natural Deduction in Isar

Natural Deduction in Isar

lemma "P A (P — Q) — Q"

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q)"

Natural Deduction in Isar

lemma "P AN (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"

Natural Deduction in Isar

lemma "P AN (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)

Natural Deduction in Isar

lemma "P AN (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"
by (erule_tac impE, simp_all)

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"
by (erule_tac impE, simp_all)
ged

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"
by (erule_tac impE, simp_all)
ged

@ Benefit of being readable without seeing the proof state.

Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"
by (erule_tac impE, simp_all)
ged

@ Benefit of being readable without seeing the proof state.
@ A little too verbose for simple predicates.

Automating Natural Deduction

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.
@ blast intro: thms elim: thms, or [intro], [elim], and [dest].

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.
@ blast intro: thms elim: thms, or [intro], [elim], and [dest].
@ Safe rules marked with “I”, e.g. [intro!].

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.

@ blast intro: thms elim: thms, or [intro], [elim], and [dest].
@ Safe rules marked with “I”, e.g. [intro!].

@ Unsafe rules applied only when no alternative.

Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.

@ blast intro: thms elim: thms, or [intro], [elim], and [dest].
@ Safe rules marked with “I”, e.g. [intro!].

@ Unsafe rules applied only when no alternative.

@ Blast is one-shot: all or nothing.

Combining Deduction and Simplification with Auto

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.
@ Won't lose information as long as the specified safe rules are truly safe.

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

@ Won't lose information as long as the specified safe rules are truly safe.
@ General technique for breaking a complex goal into several parts.

lemma "(x::nat) =y2 — x >y A x > 0"
by (auto simp add: power2_nat_le_imp_1le)

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

@ Won't lose information as long as the specified safe rules are truly safe.
@ General technique for breaking a complex goal into several parts.

lemma "(x::nat) =y2 — x >y A x > 0"
by (auto simp add: power2_nat_le_imp_1le)

@ There are also one-shot variants: force and fastforce.

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

@ Won't lose information as long as the specified safe rules are truly safe.
@ General technique for breaking a complex goal into several parts.

lemma "(x::nat) =y2 — x >y A x > 0"
by (auto simp add: power2_nat_le_imp_1le)

@ There are also one-shot variants: force and fastforce.
@ auto can produce unpredictable and bizarre results.

Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

@ Won't lose information as long as the specified safe rules are truly safe.
@ General technique for breaking a complex goal into several parts.

lemma "(x::nat) =y2 — x >y A x > 0"
by (auto simp add: power2_nat_le_imp_1le)

@ There are also one-shot variants: force and fastforce.
@ auto can produce unpredictable and bizarre results.
@ Still need manual deduction to understand why automated proof fails.

Applications

@ We looked at automating natural deduction in the propositional calculus.

Applications

@ We looked at automating natural deduction in the propositional calculus.

@ We demonstrated a far more general technique.

Applications

@ We looked at automating natural deduction in the propositional calculus.
@ We demonstrated a far more general technique.

@ We define bespoke logics in Isabelle and then reason about them.

Applications

@ We looked at automating natural deduction in the propositional calculus.
@ We demonstrated a far more general technique.
@ We define bespoke logics in Isabelle and then reason about them.

@ In particular, we can program verification (e.g., Hoare logic).

Applications

@ We looked at automating natural deduction in the propositional calculus.
@ We demonstrated a far more general technique.

@ We define bespoke logics in Isabelle and then reason about them.

@ In particular, we can program verification (e.g., Hoare logic).

@ Natural deduction is an important weapon in the proof arsenal.

Conclusion

Conclusion

This Lecture

Conclusion

This Lecture
@ Apply-style proof scripts.

Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.

Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.

Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.

Next Lecture

Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.

Next Lecture
@ Predicate calculus (quantifiers etc.).

	Low-Level Proof Scripts
	Natural Deduction Rules for Propositional Calculus
	Automation with the Classical Reasoner

