» Sets in Isabelle/HOL «

Simon Foster Jim Woodcock
University of York

18th August 2022

Overview

ﬂ Set theory in Isabelle/HOL
9 Operators on sets
© Finite sets

° Uncomputable objects

Outline

0 Set theory in Isabelle/HOL

Collections of objects

Collections of objects
@ A setis any well-defined collection of objects.

Collections of objects
@ A setis any well-defined collection of objects.
@ ’'a set —a set of elements drawn from the type ’a.

Collections of objects
@ A setis any well-defined collection of objects.
@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):

definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacificl}"

Collections of objects
@ A setis any well-defined collection of objects.

@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):

definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacificl}"

@ In HOL, this is sugar for insert :: ’a = ’a set = ’a set.

Collections of objects
@ A setis any well-defined collection of objects.
@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacificl}"
@ In HOL, this is sugar for insert :: ’a = ’a set = ’a set.

() insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

Collections of objects
@ A setis any well-defined collection of objects.
@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacificl}"
@ In HOL, this is sugar for insert :: ’a = ’a set = ’a set.

() insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insertx (insertx A) = insertx A insert_absorb2
insertz (inserty A) = inserty (insertz A) insert_commute

Collections of objects
@ A setis any well-defined collection of objects.

@ ’a set — a set of elements drawn from the type ’a.
@ Small sets are defined by listing their elements (extension):

definition Oceans :: "ocean set" where

"Oceans = {Atlantic, Arctic, Indian, Pacificl}"
@ In HOL, this is sugar for insert :: ’a = ’a set = ’a set.
() insert Atlantic

(insert Arctic

(insert Indian
(insert Pacific {})))
insertz (insertx A) = insertx A insert_absorb2

insertz (inserty A) = inserty (insertz A) insert_commute

@ Unlike a list, the occurrence and order of members is irrelevant.

Membership and extension

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites insert iff

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites insert iff
@ Extensionality

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites insert iff
@ Extensionality
A=B & (Vz.(z€ A) & (z € B)) set_eq iff

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.

te{w,...,un} & t=uVvV...Vt=u,

teinsertuS & t=uVvites insert_iff
@ Extensionality

A=B & (Vz.(z€ A) & (z € B)) set_eq iff
@ Subset

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.

te{w,...,un} & t=uVvV...Vt=u,

teinsertuS & t=uVvites insert_iff
@ Extensionality

A=B & (Vz.(z€ A) & (z € B)) set_eq iff
@ Subset

ACB & VexeAzeB subset_eq

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.

te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites

@ Extensionality
A=B & (Vz.(z€ A) & (z € B))

@ Subset

ACB & VxeAzeB
A=B &< ACBANBCA

insert_iff

set_eq_iff

subset_eq
set_eq_subset

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.

te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites
@ Extensionality
A=B & (Vz.(z€ A) & (z € B))
@ Subset
ACB & VeeAzrzeB
A=B < ACBABCA
@ Empty set {} (mathematically ()):

insert_iff

set_eq_iff

subset_eq
set_eq_subset

Membership and extension

@ Membership z € S: z is an element of set 5. Write ~(z € S)as = ¢ S.
te{w,...,un} & t=uVvV...Vt=u,
teinsertuS & t=uVvites insert iff
@ Extensionality

A=B & (Vz.(z€ A) & (z € B)) set_eq iff
@ Subset

ACB & VreArzeDB subset_eq

A=B << ACBABCA set_eq_subset

@ Empty set {} (mathematically ()):
(c € {}) = False empty_iff

Set Deduction Rules (Selection)

Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

'Fte A te BI'FP
ACBEP

subsetD

Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

'Fte A te BI'FP
ACBEP

subsetD

'-ACB 'BCA
I'-A=18B

equalityl

Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

'Fte A te BI'FP
ACBEP

subsetD

'-ACB 'BCA
I'-A=18B

equalityl

teAte BTFP t¢At¢BTFP

A—BTrP equalityCE

Set Deduction Rules (Selection)

reATl'FzeB

z & fu(T) T-ACB subsetI

'Fte A te BI'FP
ACBEP

subsetD

'-ACB '-BCA

TE A=D1 equalityl

teAte BTFP t¢At¢BTFP

A—BTrP equalityCE

@ Subset and equality proofs can be automated with blast and auto.

Bounded Quantifiers

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.

@ V€ A. P(x)—for every element of A predicate P holds.

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.
@ V€ A. P(x)—for every element of A predicate P holds.

@ Juz € A. P(x) —there is an element of A such that 7 holds.

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.
@ V€ A. P(x)—for every element of A predicate P holds.
@ Juz € A. P(x) —there is an element of A such that 7 holds.

@ In HOL, these are syntactic sugar for regular quantification:

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.
@ V€ A. P(x)—for every element of A predicate P holds.
@ Juz € A. P(x) —there is an element of A such that 7 holds.

@ In HOL, these are syntactic sugar for regular quantification:

(Vz e A.P(z)) = (Vz.z2 € A— P(2))

Bounded Quantifiers

@ Sets can be used to bound the quantifiers.
@ V€ A. P(x)—for every element of A predicate P holds.
@ Juz € A. P(x) —there is an element of A such that 7 holds.

@ In HOL, these are syntactic sugar for regular quantification:

(Vz e A.P(z)) = (Vz.z2 € A— P(2))

(Jz € A.P(z)) = (Jz.x € AN P(z))

Set comprehension

Set comprehension

@ Elements of set S satisfying property P (maths: {z € S5 | P(xz)}):

Set comprehension

@ Elements of set S satisfying property P (maths: {z € S5 | P(xz)}):
te{zeS.Plx)} © teSAP()

Set comprehension

@ Elements of set S satisfying property P (maths: {z € 5 | P(z)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:

Set comprehension

@ Elements of set S satisfying property P (maths: {z € 5 | P(z)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

Set comprehension

@ Elements of set S satisfying property P (maths: {z € 5 | P(z)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Jz.Plx) Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Set comprehension

@ Elements of set S satisfying property P (maths: {z € 5 | P(z)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Collect :: (’a= bool) = ’a set

Set comprehension

@ Elements of set S satisfying property P (maths: {z € 5 | P(z)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Collect :: (’a= bool) = ’a set

{z.P(z)} = Collect P

Set comprehension

@ Elements of set S satisfying property P (maths: {z € S5 | P(xz)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Collect :: (’a= bool) = ’a set

{z.P(z)} = Collect P
a € (Collect P) & P a mem_Collect_eq

Set comprehension

@ Elements of set S satisfying property P (maths: {z € S5 | P(xz)}):
te{zeS.Plx)} © teSAP()

@ Term comprehension: set constructed from particular terms:
te{f(z)|z.P(z)} & (Fz.P(z)Nt=f(z))

@ Set comprehension is the axiomatic constructor for sets:

Collect :: (’a= bool) = ’a set

{z.P(z)} = Collect P
a € (Collect P) & P a mem_Collect_eq
Collect (Ax.x €A)=A Collect mem eq

Example: Subset Proofs

Example: Subset Proofs

lemma subset_ex: "{1::nat,3,7,9} C {x. 0 < x A x < 100}"

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat

Example: Subset Proofs

lemma subset_ex: "{1::nat,3,7,9} C {x. 0 < x A x < 100}"
proof (rule subsetI)

fix x :: nat

assume "x € {1, 3, 7, 91"

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)

fix x :: nat

assume "x € {1, 3, 7, 91"

hence xs: "x =1V x=3Vx=7YVzx=29"

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx-=79"
by (simp add: insert_iff empty_iff)

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx-=79"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)

fix x :: nat

assume "x € {1, 3, 7, 91"

hence xs: "x =1V x=3Vzx=7}%Vzx-=9"

by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx-=79"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)
from xs show "0 < x" by auto

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx=29"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)
from xs show "® < x" by auto
from xs show "x < 100" by auto

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx=29"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)
from xs show "® < x" by auto
from xs show "x < 100" by auto
ged

Example: Subset Proofs

lemma subset_ex: "{l1::nat,3,7,9} C {x. 0 < x A X < 100}"
proof (rule subsetI)
fix x :: nat
assume "x € {1, 3, 7, 91"
hence xs: "x =1V x=3Vx=7YVzx=29"
by (simp add: insert_iff empty_iff)
show "x € {x. 0 < x A x < 100}"
proof (unfold mem_Collect_eq, rule conjI)
from xs show "® < x" by auto
from xs show "x < 100" by auto
ged
ged

Outline

e Operators on sets

Set Operators

Set Operators

@ Set union:

Set Operators

@ Set union:

re€(AUB) & r€AVvreDB Un_iff

Set Operators

@ Set union:
re€(AUB) & r€AVvreDB Un_iff

@ Set intersection:

Set Operators

@ Set union:
r€(AUB) & z€AVvreB
@ Set intersection:

r€(ANB) & z€ANTEB

Un_iff

Int_iff

Set Operators

@ Set union:

r€(AUB) & z€AVvreB
@ Set intersection:

r€(ANB) & z€ANTEB
@ Set difference (maths: A\ B):

Un_iff

Int_iff

Set Operators

@ Set union:

r€(AUB) & z€AVvreB
@ Set intersection:

r€(ANB) & z€ANTEB
@ Set difference (maths: A\ B):

r€(A-B) @ 1€ ANz ¢ B

Un_iff

Int_iff

Diff iff

Set Operators

@ Set union:
r€(AUB) & z€AVvreB
@ Set intersection:
r€(ANB) & z€ANTEB
@ Set difference (maths: A\ B):
r€(A-B) @ 1€ ANz ¢ B
Example

Un_iff

Int_iff

Diff iff

Set Operators

@ Set union:

r€(AUB) & z€AVvreB Un_iff
@ Set intersection:

r€(ANB) & z€ANTEB Int iff
@ Set difference (maths: A\ B):

r€(A-B) © 1€ ANz ¢ B Diff iff

Example
@ {Atlantic, Indian} U {Indian, Pacific} = { Atlantic, Indian, Pacific}

Set Operators

@ Set union:
r€(AUB) & z€AVvreB Un_iff
@ Set intersection:
r€(ANB) & z€ANTEB Int iff
@ Set difference (maths: A\ B):
r€(A-B) © 1€ ANz ¢ B Diff iff
Example

@ {Atlantic, Indian} U {Indian, Pacific} = { Atlantic, Indian, Pacific}
@ {Atlantic, Indian} N {Indian, Pacific} = {Indian}

Set Operators

@ Set union:

re€(AUB) & r€AVvreDB Un_iff
@ Set intersection:

re€(ANB) & r€e ANz eDB Int_iff
@ Set difference (maths: A\ B):

r€(A-B) © 1€ ANz ¢ B Diff iff

Example

@ {Atlantic, Indian} U {Indian, Pacific} = { Atlantic, Indian, Pacific}
@ {Atlantic, Indian} N {Indian, Pacific} = {Indian}
@ {Atlantic, Indian} — {Indian, Pacific} = { Atlantic}

Distributed Operators

Distributed Operators

@ Distributed union:

Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---

Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---
re€US & (A€ Sered) Union iff

Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---

relJS & (JA€SexcA)

@ Distributed intersection:

Union_iff

Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---

relJS & (JA€SexcA)

@ Distributed intersection:

MA,B,C,---} =ANBNCA---

Union_iff

Distributed Operators

@ Distributed union:

U{4,B,C,---} = AUBUCU---

relJS & (JA€SexcA)

@ Distributed intersection:

MA,B,C,---} =ANBNCA---

re€S & (VAeSezx e A)

Union_iff

Inter_iff

Intervals

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).

@ Lower bound: {m. .} ([m, +00)).

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).
@ Lower bound: {m. .} ([m, +00)).

@ Upper bound: {..n} ((—oo, n}).

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).
@ Lower bound: {m. .} ([m, +00)).
@ Upper bound: {..n} ((—oo, n}).

@ Strictly between two endpoints: {m<. .<n} ((m, n)).

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).
@ Lower bound: {m. .} ([m, +00)).

@ Upper bound: {..n} ((—oo, n}).

@ Strictly between two endpoints: {m<. .<n} ((m, n)).

@ Strict lower bound: {m<. .} ((m, +00)).

Intervals

@ Interval between two endpoints: {m. .n} (maths: [m, n]).
@ Lower bound: {m. .} ([m, +00)).

@ Upper bound: {..n} ((—oo, n}).

@ Strictly between two endpoints: {m<. .<n} ((m, n)).

@ Strict lower bound: {m<. .} ((m, +00)).

@ Strict upper bound: {..<n} ((—oc, n)).

Outline

@ Finite sets

Finite sets

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

Finite sets
@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.
@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.
@ Non-finite sets are infinite. For example, {0: :nat..}.
@ Finite characterised by finite :: 'a set = bool in HOL.

finite {} finite.emptyI

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert

finite (A U B) & (finite A A finite B) finite_Un

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un

@ Lists can be converted to a finite set with set :: ’a list = ’a set.

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un

@ Lists can be converted to a finite set with set :: ’a list = ’a set.

@ The resulting set ignores the occurrence and order of list elements :

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.
@ Non-finite sets are infinite. For example, {0: :nat..}.
@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un
@ Lists can be converted to a finite set with set :: ’a list = ’a set.
@ The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite_set

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un

@ Lists can be converted to a finite set with set :: ’a list = ’a set.

@ The resulting set ignores the occurrence and order of list elements :
finite (set xs) finite_set

set [] = {} empty_set

Finite sets

@ Finite set has a finite number of elements, e.g. {uy, ug, - -+, uy, }.

@ Non-finite sets are infinite. For example, {0: :nat..}.

@ Finite characterised by finite :: 'a set = bool in HOL.
finite {} finite.emptyI
finite (insert x A) & finite A finite_insert
finite (A U B) & (finite A A finite B) finite_Un

@ Lists can be converted to a finite set with set :: ’a list = ’a set.

@ The resulting set ignores the occurrence and order of list elements :
finite (set xs) finite_set
set [] = {} empty_set
set (x # xs) = insert x (set xs) list.set

Power set

Power set

@ Set of all subsets of A written as P A:

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: ’a set = ’a set set in Isabelle/HOL.

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: 'a set = ’a set set in Isabelle/HOL.
@ Set of all finite powersets: [A.

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: 'a set = ’a set set in Isabelle/HOL.
@ Set of all finite powersets: [A.

@ Fpow :: "a set = ’a set set in Isabelle/HOL

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: 'a set = ’a set set in Isabelle/HOL.
@ Set of all finite powersets: [A.

@ Fpow :: "a set = ’a set set in Isabelle/HOL

FA = {X.X C AN finite X} Fpow_def

Power set

@ Set of all subsets of A written as P A:

SePA & SCA Pow_iff
o P{1,2,3} = {{}, {1}, {2} {3}, {1, 2}, {1,3},{2,3},{1,2,3}}.

@ Pow:: 'a set = ’a set set in Isabelle/HOL.
@ Set of all finite powersets: [A.

@ Fpow :: "a set = ’a set set in Isabelle/HOL

FA = {X.X C AN finite X} Fpow_def
FA C PA Fpow_subset_Pow

Cartesian product

Cartesian product

@ Suppose A and B are sets.

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z,).

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z, y).
@ zis an element of A and y is an element of 5.

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z, y).
@ zis an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z, y).
@ zis an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff

@ Membership:

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z,).
@ 1 is an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff
@ Membership:

(T1,...,0p) EAL X ... X Ay & ;€A N... N2y €Ay

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z,).
@ 1 is an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff
@ Membership:
(T1,...,0p) EAL X ... X Ay & ;€A N... N2y €Ay

@ Equality:

Cartesian product

@ Suppose A and B are sets.
@ The cartesian product A x B is the set of all tuples (z,).
@ 1 is an element of A and y is an element of 5.

(z,y) EAXxB & z€ ANyEB mem_Sigma iff
@ Membership:

(T1,...,0p) EAL X ... X Ay & ;€A N... N2y €Ay
@ Equality:

(1, oy Zp) = (Y1 s Un) & TI=WUNA ... \NTp=1Yn

Outline

@ Uuncomputable objects

Computability

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.

@ Distinguishes HOL from programming languages.

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.
@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.
@ Distinguishes HOL from programming languages.
@ HOL has mathematical real numbers, not just fixed- or floating-point.

@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.
@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.
@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).

@ Can’t compute {0::real. .1} as real numbers aren’t enumerable.

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.
@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.
@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).
@ Can’t compute {0::real. .1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001, v2/2, 7/4, ---}

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.

@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.

@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).

@ Can’t compute {0::real. .1} as real numbers aren’t enumerable.
{0::real..1} = {0, 1, 0.1, 0.01, 0.001, v2/2, 7/4, ---}

@ Reason symbolically using theorems.

Computability

@ Sets can be uncomputable, unlike lists and other algebraic datatypes.

@ Distinguishes HOL from programming languages.

@ HOL has mathematical real numbers, not just fixed- or floating-point.

@ Can’'t compute {0::nat..}: it's unbounded and so infinite (try value).

@ Can’t compute {0::real. .1} as real numbers aren’t enumerable.
{0::real..1} = {0, 1, 0.1, 0.01, 0.001, v2/2, 7/4, ---}

@ Reason symbolically using theorems.

@ Can usually compute with finite sets.

Conclusion

Conclusion

This Lecture

Conclusion

This Lecture
@ Set theory in Isabelle/HOL.

Conclusion

This Lecture
@ Set theory in Isabelle/HOL.
@ Finite sets.

Conclusion

This Lecture
@ Set theory in Isabelle/HOL.
@ Finite sets.
@ Uncomputable objects.

Conclusion

This Lecture
@ Set theory in Isabelle/HOL.
@ Finite sets.
@ Uncomputable objects.

Next Lecture

Conclusion

This Lecture
@ Set theory in Isabelle/HOL.
@ Finite sets.
@ Uncomputable objects.

Next Lecture
@ Foundations of types.

	Set theory in Isabelle/HOL
	Operators on sets
	Finite sets
	Uncomputable objects

