
1/24

Automation and Sledgehammer in Isabelle

Simon Foster Jim Woodcock
University of York

20th August 2022



2/24

Overview

1 SAT solvers, resolution provers, and SMT solvers

2 Tool integration with sledgehammer

3 Counterexample generators



3/24

Overview

1 SAT solvers, resolution provers, and SMT solvers

2 Tool integration with sledgehammer

3 Counterexample generators



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



4/24

Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



5/24

SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



6/24

Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.



7/24

Resolution
metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:
4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:
4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:
4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:
4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:

¬P ∨ Q P
Q

4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:

¬P ∨ Q P
Q

4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:

¬P ∨ Q P
Q

4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:

¬P ∨ Q P
Q

4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



7/24

Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:

¬P ∨ Q P
Q

4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



8/24

Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



9/24

SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.



10/24

Arithmetic Decision Procedures
arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

Linear Arithmetic (linarith)
Proof method for systems of linear inequalities, e.g. a · x + b · y ≤ c.
Employs an algorithm called Fourier-Motzkin elimination.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

Linear Arithmetic (linarith)
Proof method for systems of linear inequalities, e.g. a · x + b · y ≤ c.
Employs an algorithm called Fourier-Motzkin elimination.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

Linear Arithmetic (linarith)
Proof method for systems of linear inequalities, e.g. a · x + b · y ≤ c.
Employs an algorithm called Fourier-Motzkin elimination.

arith tries both presburger and/or linarith.



10/24

Arithmetic Decision Procedures

Presburger Arithmetic (presburger)
Arithmetic formulae involving only 0, 1, and +, and equality.
Decidable with exponential complexity.
presburger handles quantifiers using quantifier elimination (QE).
E.g. ¬(∃ x y : N. 2x + 5y = 3) is solvable with presburger.

Linear Arithmetic (linarith)
Proof method for systems of linear inequalities, e.g. a · x + b · y ≤ c.
Employs an algorithm called Fourier-Motzkin elimination.

arith tries both presburger and/or linarith.



11/24

Overview

1 SAT solvers, resolution provers, and SMT solvers

2 Tool integration with sledgehammer

3 Counterexample generators



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



12/24

Sledgehammer

Integration of resolution provers and SMT solvers into Isabelle/HOL.
Use the “Sledgehammer” pane to apply the tool on an open subgoal.
Runs several tools in parallel, reconstructs output as Isabelle proof.
Brings benefits of proof automation to interactive theorem proving.
Does so in a safe way – there is no need to trust the external tools.



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:



13/24

Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:

lemma "(A < B) = (A 6= B ∧ (∀ x∈A. x ∈ B))"
by (metis (no_types, lifting) less_le subset_iff)



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.

Proof Reconstruction Tactics
metis: built-in resolution prover. Solves goal with small theorem set.
smt: converts proof objects from Z3, CVC4, veriT into Isabelle proofs.
presburger and linarith: solve arithmetic conjectures.
simp and fastforce: sometimes normal proof methods are used.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.

Proof Reconstruction Tactics
metis: built-in resolution prover. Solves goal with small theorem set.
smt: converts proof objects from Z3, CVC4, veriT into Isabelle proofs.
presburger and linarith: solve arithmetic conjectures.
simp and fastforce: sometimes normal proof methods are used.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.

Proof Reconstruction Tactics
metis: built-in resolution prover. Solves goal with small theorem set.
smt: converts proof objects from Z3, CVC4, veriT into Isabelle proofs.
presburger and linarith: solve arithmetic conjectures.
simp and fastforce: sometimes normal proof methods are used.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.

Proof Reconstruction Tactics
metis: built-in resolution prover. Solves goal with small theorem set.
smt: converts proof objects from Z3, CVC4, veriT into Isabelle proofs.
presburger and linarith: solve arithmetic conjectures.
simp and fastforce: sometimes normal proof methods are used.



14/24

How Sledgehammer Works

1 Find background theorems important for proof with relevance filtering.
2 Convert goal, assumptions, theorems into input format for proof tools.
3 Execute the specified tools, possibly in parallel and remotely.
4 For tools returning a solution, optimise proof by minimising theorem set.
5 Reconstruct and check proofs in Isabelle/HOL. Ensures soundness.

Proof Reconstruction Tactics
metis: built-in resolution prover. Solves goal with small theorem set.
smt: converts proof objects from Z3, CVC4, veriT into Isabelle proofs.
presburger and linarith: solve arithmetic conjectures.
simp and fastforce: sometimes normal proof methods are used.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.

Typical Proof Procedure
1 Use high-level proof pattern, like structural induction or case analysis.
2 Use simp and auto to breakdown resulting subgoals.
3 Apply sledgehammer to residual proof obligations.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.

Typical Proof Procedure
1 Use high-level proof pattern, like structural induction or case analysis.
2 Use simp and auto to breakdown resulting subgoals.
3 Apply sledgehammer to residual proof obligations.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.

Typical Proof Procedure
1 Use high-level proof pattern, like structural induction or case analysis.
2 Use simp and auto to breakdown resulting subgoals.
3 Apply sledgehammer to residual proof obligations.



15/24

Sledgehammer Applications

Best suited to first-order, algebraic, and equational proof obligations.
sledgehammer doesn’t handle higher-order techniques like induction.
Useful for finding suitable lemmas for proofs.
Sledgehammer is invaluable discharging verification conditions.

Typical Proof Procedure
1 Use high-level proof pattern, like structural induction or case analysis.
2 Use simp and auto to breakdown resulting subgoals.
3 Apply sledgehammer to residual proof obligations.



16/24

Sledgehammer Examples (1)



16/24

Sledgehammer Examples (1)
lemma rat_prop:
fixes x :: rat
shows "x2 - 3*x + 2 < 0 −→ x > 0"
by (metis add_less_zeroD add_neg_neg
diff_add_cancel less_iff_diff_less_0
mult_less_cancel_right_disj
not_numeral_less_zero power2_eq_square)



16/24

Sledgehammer Examples (1)
lemma rat_prop:
fixes x :: rat
shows "x2 - 3*x + 2 < 0 −→ x > 0"
by (metis add_less_zeroD add_neg_neg
diff_add_cancel less_iff_diff_less_0
mult_less_cancel_right_disj
not_numeral_less_zero power2_eq_square)

lemma tl_element:
assumes "x ∈ set xs" "x 6= hd(xs)"
shows "x ∈ set(tl(xs))"
by (metis assms(1) assms(2) list.exhaust_sel
list.sel(2) set_ConsD)



17/24

Sledgehammer Examples (2)



17/24

Sledgehammer Examples (2)

lemma sorted_distinct:
assumes "sorted xs" "distinct xs"
shows "(∀ i<length xs - 1. xs i < xs(i + 1))"

using assms proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
by (simp, metis Suc_leI Suc_le_lessD diff_less
less_nat_zero_code linorder_le_less_linear
not_one_le_zero nth_Cons’ nth_Cons_Suc
nth_equal_first_eq order_less_le sorted_wrt_nth_less
strict_sorted_iff)

qed



18/24

Overview

1 SAT solvers, resolution provers, and SMT solvers

2 Tool integration with sledgehammer

3 Counterexample generators



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



19/24

Counterexamples

Automated theorem provers may fail to prove a goal you believe is true.

Could be (1) some lemmas are missing or (2) the goal is actually false.

A counterexample is a variable assignment that falsifies a theorem.

lemma wrong:"(x::nat)> 5"

This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.

Counterexample generators automatically generate these.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



20/24

Quickcheck

Generates counterexamples using the code generator.

Inspired by the Haskell random testing tool QuickCheck.

Tests randomly, exhaustively (up to a bound), or symbolically.

Run automatically when theorem is specified, or by quickcheck.

lemma wrong:"(x::nat)> 5"

Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.



21/24

Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.
quickcheck quickly finds the following counterexample:



21/24

Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.
quickcheck quickly finds the following counterexample:



21/24

Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.

lemma rev_app: "rev (xs @ ys) = rev xs @ rev ys"

quickcheck quickly finds the following counterexample:



21/24

Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.

lemma rev_app: "rev (xs @ ys) = rev xs @ rev ys"

quickcheck quickly finds the following counterexample:



21/24

Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.

lemma rev_app: "rev (xs @ ys) = rev xs @ rev ys"

quickcheck quickly finds the following counterexample:

Auto Quickcheck found a counterexample:
xs = [a]
ys = [b]

Evaluated terms:
rev (xs @ ys) = [b, a]
rev xs @ rev ys = [a, b]



22/24

Constraint Solving with Quickcheck

No list has five distinct elements that are all even:
quickcheck finds the following counterexample:
xs = [8, 6, 4, 2, 0].



22/24

Constraint Solving with Quickcheck

No list has five distinct elements that are all even:
quickcheck finds the following counterexample:
xs = [8, 6, 4, 2, 0].



22/24

Constraint Solving with Quickcheck

No list has five distinct elements that are all even:

lemma list_constraint:
fixes xs :: "nat list"
shows "¬ (length xs = 5 ∧ distinct xs

∧ (∀ i<length xs. even (xs!i)))"

quickcheck [tester=narrowing , size=100]

quickcheck finds the following counterexample:
xs = [8, 6, 4, 2, 0].



22/24

Constraint Solving with Quickcheck

No list has five distinct elements that are all even:

lemma list_constraint:
fixes xs :: "nat list"
shows "¬ (length xs = 5 ∧ distinct xs

∧ (∀ i<length xs. even (xs!i)))"

quickcheck [tester=narrowing , size=100]

quickcheck finds the following counterexample:
xs = [8, 6, 4, 2, 0].



22/24

Constraint Solving with Quickcheck

No list has five distinct elements that are all even:

lemma list_constraint:
fixes xs :: "nat list"
shows "¬ (length xs = 5 ∧ distinct xs

∧ (∀ i<length xs. even (xs!i)))"

quickcheck [tester=narrowing , size=100]

quickcheck finds the following counterexample:
xs = [8, 6, 4, 2, 0].



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.

lemma "(x::nat) > 5" nitpick
(* Nitpick found a counterexample: x = 5 *)

More suited to set theoretic problems than quickcheck.



23/24

Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.

lemma "(x::nat) > 5" nitpick
(* Nitpick found a counterexample: x = 5 *)

More suited to set theoretic problems than quickcheck.



24/24

Conclusion

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.



24/24

Conclusion

This Lecture
Overview of automated reasoning in Isabelle/HOL.
SAT solvers, resolution provers, and SMT solvers.
Tool integration with sledgehammer.
Counterexample generators.

Next Lecture
Formal specification of railway signalling equipment.


	SAT solvers, resolution provers, and SMT solvers
	Tool integration with ZedColorsledgehammer
	Counterexample generators

