
1/20

Sets in Isabelle/HOL

Simon Foster Jim Woodcock
University of York

18th August 2022



2/20

Overview

1 Set theory in Isabelle/HOL

2 Operators on sets

3 Finite sets

4 Uncomputable objects



3/20

Outline

1 Set theory in Isabelle/HOL

2 Operators on sets

3 Finite sets

4 Uncomputable objects



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



4/20

Collections of objects
A set is any well-defined collection of objects.
’a set – a set of elements drawn from the type ’a.
Small sets are defined by listing their elements (extension):
definition Oceans :: "ocean set" where
"Oceans = {Atlantic, Arctic, Indian, Pacific}"

In HOL, this is sugar for insert :: ’a ⇒ ’a set ⇒ ’a set.
insert Atlantic
(insert Arctic
(insert Indian
(insert Pacific {})))

insert x (insert x A) = insert x A insert absorb2

insert x (insert y A) = insert y (insert x A) insert commute

Unlike a list, the occurrence and order of members is irrelevant.



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



5/20

Membership and extension
Membership x ∈ S : x is an element of set S . Write ¬(x ∈ S ) as x /∈ S .

t ∈ { u1, . . . , un } ⇔ t = u1 ∨ . . . ∨ t = un

t ∈ insert u S ⇔ t = u ∨ t ∈ S insert iff

Extensionality

A = B ⇔ (∀ x . (x ∈ A) ⇔ (x ∈ B)) set eq iff

Subset

A ⊆ B ⇔ ∀ x ∈ A. x ∈ B subset eq

A = B ⇔ A ⊆ B ∧ B ⊆ A set eq subset

Empty set {} (mathematically ∅):
(c ∈ {}) = False empty iff



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



6/20

Set Deduction Rules (Selection)
x ∈ A,Γ ` x ∈ B

x /∈ fv(Γ) subsetI
Γ ` A ⊆ B

Γ ` t ∈ A t ∈ B ,Γ ` P
subsetD

A ⊆ B ` P

Γ ` A ⊆ B Γ ` B ⊆ A
equalityI

Γ ` A = B

t ∈ A, t ∈ B ,Γ ` P t /∈ A, t /∈ B ,Γ ` P
equalityCE

A = B ,Γ ` P

Subset and equality proofs can be automated with blast and auto.



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



7/20

Bounded Quantifiers

Sets can be used to bound the quantifiers.

∀ x ∈ A.P(x ) – for every element of A predicate P holds.

∃ x ∈ A.P(x ) – there is an element of A such that P holds.

In HOL, these are syntactic sugar for regular quantification:

(∀ x ∈ A.P(x )) ≡ (∀ x . x ∈ A −→ P(x ))

(∃ x ∈ A.P(x )) ≡ (∃ x . x ∈ A ∧ P(x ))



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



8/20

Set comprehension

Elements of set S satisfying property P (maths: {x ∈ S | P(x )}):
t ∈ { x ∈ S .P(x )} ⇔ t ∈ S ∧ P(t)

Term comprehension: set constructed from particular terms:

t ∈ { f (x ) | x .P(x ) } ⇔ (∃ x .P(x ) ∧ t = f (x ) )

Set comprehension is the axiomatic constructor for sets:

Collect :: (’a⇒ bool)⇒ ’a set

{x .P(x )} = Collect P

a ∈ (Collect P) ⇔ P a mem Collect eq

Collect (λ x. x ∈ A) = A Collect mem eq



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



9/20

Example: Subset Proofs

lemma subset_ex: "{1::nat ,3,7,9} ⊆ {x. 0 < x ∧ x < 100}"
proof (rule subsetI)
fix x :: nat
assume "x ∈ {1, 3, 7, 9}"
hence xs: "x = 1 ∨ x = 3 ∨ x = 7 ∨ x = 9"
by (simp add: insert_iff empty_iff)

show "x ∈ {x. 0 < x ∧ x < 100}"
proof (unfold mem_Collect_eq , rule conjI)
from xs show "0 < x" by auto
from xs show "x < 100" by auto

qed
qed



10/20

Outline

1 Set theory in Isabelle/HOL

2 Operators on sets

3 Finite sets

4 Uncomputable objects



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



11/20

Set Operators

Set union:

x ∈ (A ∪ B) ⇔ x ∈ A ∨ x ∈ B Un iff

Set intersection:

x ∈ (A ∩ B) ⇔ x ∈ A ∧ x ∈ B Int iff

Set difference (maths: A \ B ):

x ∈ (A− B) ⇔ x ∈ A ∧ x 6∈ B Diff iff

Example
{Atlantic, Indian} ∪ {Indian,Pacific} = {Atlantic, Indian,Pacific}
{Atlantic, Indian} ∩ {Indian,Pacific} = {Indian}
{Atlantic, Indian} − {Indian,Pacific} = {Atlantic}



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



12/20

Distributed Operators

Distributed union:⋃
{A,B ,C , · · · } = A ∪ B ∪ C ∪ · · ·

x ∈
⋃

S ⇔ (∃A ∈ S • x ∈ A ) Union iff

Distributed intersection:⋂
{A,B ,C , · · · } = A ∩ B ∩ C ∩ · · ·

x ∈
⋂

S ⇔ (∀A ∈ S • x ∈ A ) Inter iff



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



13/20

Intervals

Interval between two endpoints: {m..n} (maths: [m, n]).

Lower bound: {m..} ([m,+∞)).

Upper bound: {..n} ((−∞, n]).

Strictly between two endpoints: {m<..<n} ((m, n)).

Strict lower bound: {m<..} ((m,+∞)).

Strict upper bound: {..<n} ((−∞, n)).



14/20

Outline

1 Set theory in Isabelle/HOL

2 Operators on sets

3 Finite sets

4 Uncomputable objects



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



15/20

Finite sets
Finite set has a finite number of elements, e.g. {u1, u2, · · · , un}.
Non-finite sets are infinite. For example, {0::nat..}.

Finite characterised by finite :: ’a set ⇒ bool in HOL.

finite {} finite.emptyI

finite (insert x A)⇔ finite A finite insert

finite (A ∪ B) ⇔ (finite A ∧ finite B) finite Un

Lists can be converted to a finite set with set :: ’a list ⇒ ’a set.

The resulting set ignores the occurrence and order of list elements :

finite (set xs) finite set

set [] = {} empty set

set (x # xs) = insert x (set xs) list.set



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



16/20

Power set

Set of all subsets of A written as PA:

S ∈ PA ⇔ S ⊆ A Pow iff

P{1, 2, 3} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Pow :: ’a set⇒ ’a set set in Isabelle/HOL.
Set of all finite powersets: FA.
Fpow :: ’a set⇒ ’a set set in Isabelle/HOL

FA = {X .X ⊆ A ∧ finite X } Fpow def

FA ⊆ PA Fpow subset Pow



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



17/20

Cartesian product
Suppose A and B are sets.
The cartesian product A × B is the set of all tuples (x , y).
x is an element of A and y is an element of B .

(x , y) ∈ A × B ⇔ x ∈ A ∧ y ∈ B mem Sigma iff

Membership:

(x1, . . . , xn) ∈ A1 × . . . × An ⇔ x1 ∈ A1 ∧ . . . ∧ xn ∈ An

Equality:

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn



18/20

Outline

1 Set theory in Isabelle/HOL

2 Operators on sets

3 Finite sets

4 Uncomputable objects



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



19/20

Computability

Sets can be uncomputable, unlike lists and other algebraic datatypes.

Distinguishes HOL from programming languages.

HOL has mathematical real numbers, not just fixed- or floating-point.

Can’t compute {0::nat..}: it’s unbounded and so infinite (try value).

Can’t compute {0::real..1} as real numbers aren’t enumerable.

{0::real..1} = {0, 1, 0.1, 0.01, 0.001,
√

2/2, π/4, · · · }

Reason symbolically using theorems.

Can usually compute with finite sets.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.



20/20

Conclusion

This Lecture
Set theory in Isabelle/HOL.
Finite sets.
Uncomputable objects.

Next Lecture
Foundations of types.


	Set theory in Isabelle/HOL
	Operators on sets
	Finite sets
	Uncomputable objects

