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Motivation: Proof vs. Testing

@ Consider two versions of the doubleAll function:

fun doubleAll :: "nat list = nat list" where

"doubleAll []1 = [1" |
"doubleAll (x # xs) = (x + x) # doubleAll xs"

definition doubleAll’ :: "nat list = nat list"
where "doubleAll’ = map double”

@ How do we show these functions are the same:
doubleAll = doubleAll’

@ We can test, but only for a finite number of cases.

@ Formal proof allows us to show it holds for all cases.
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@ Commands like datatype, definition, and fun provide facts.

@ These can all be used in a proof.

@ Fact: a formula that the theorem prover accepts as true, usually named.
@ print theorems: see facts generated by the previous command.

@ definition square :: "nat = nat" where "square x = x*x"

@ Produces fact square def: definitional equation square x = x*x.

@ x is a free variable, and it can be instantiated with any value of type nat.
@ Compare with A x. x + y, where x is bound and y is free.

@ Recall the contents of a named theorem using the command thm.

@ Named facts: created with commands theorem and lemma, and proofs.
°

Lemma: smaller result, generally working towards a theorem.
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Specifying Theorems
@ A theorem has this form:
theorem name:
fixes x1 :: Tl ... xn :: T n
assumes al: "assml"™ and a2: "assm2"
shows "goal"

@ Often a simpler form can be used, e.g. theorem n: "goal".
o fixes: give the free variables in a theorem, i.e. logical place-holders.
@ assumes: state any assumptions that the goal depends on.
@ shows: state the goal that we want to prove.
@ Example
theorem square_greater_zero:
fixes x :: nat (* Type can be inferred. *)
assumes "x > 0"
shows "square x > 0"
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One-Line Proofs

Equations and basic facts can be given to the simplifier.

Increases automation of equational proofs.

Often lets us prove a theorem in one line using by command.

Example
theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Both x and y are free variables that can be instantiated with any value.

“by” takes a proof tactic that is applied to prove the theorem.

If the tactic does not completely prove the goal, it fails.
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The Simplifier

Powerful proof tactic automating equational reduction of terms.

()

Uses a form of fact called a simplification rule to rewrite the goal.

()

Rules application repeated until no more simplifications are possible.

Example

vV x+0=x v/ 1+2=3
v x—x=0 XX+y=y+x

()

LHS should be “simpler” than RHS (not enforced).

®

Failure to ensure genuine simplification may lead to infinite rewrite loop.
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Applying the Simplifier
@ Use simp or (simp add: thms) and (simp only: thms).
@ Mark theorems with attribute [simp] to make simplifier aware.
@ theorem attributes allow us to provide hints to automated proof tactics.

Theorem Attributes

(* Add a simplification rule, once proved *)
theorem mythml [simp]: "x + 0 = x"

(* Add proved rule as simplification ¥*)
declare mythm2 [simp]

(* Remove simplification rule *)
declare mythm2 [simp del]
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Theorem Library

@ HOL contains a large library of arithmetic theorems.
@ These help us to reason about the square function.

Arithmetic Theorems
at+0=a (add_0_right)
at+b=>b+a (add_commute)
ax0=0 (mult_@_right)
ax(b+c)=axb+axc (distrib_left)
(a+b)xc=axc+bxc (distrib_right)

v

@ Command find_theorems searches for theorems matching pattern.
@ “find_theorems "(+)"” recalls all theorems containing plus operator.
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theorem square_sum:
"square (x + y) = square X + square y + 2*x*y"
by (simp add: square_def algebra_simps)

Left-hand side

square (X + y) @E+y)*&@+y)
X*@@+y)+y*FE+y)
X:‘:X+X=':y+y-k(x+y)

g

X*¥X+Xx* y+ yY*x+y*y)

square_def
distrib_right
distrib_left
distrib_left

Right-hand side

square X + square y + 2*x*y

g

X."X+y.":y+2*

xv‘:x+y7‘:y+x7‘:

g

x“n y

X *XxX+y*y+ X+Xx)*y

y+x*y
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Step-by-step Proofs in Isar

@ Single line proof with by isn’t always possible or desirable.

@ Isar provides a structured language for readable proofs.

@ This makes reasoning explicit.

@ Break down a proof into intermediate steps, combine to prove the goal.
@ Open a proof environment with delimiters proof ... ged.

@ ged: “quod erat demonstrandum”, what was to be shown.

@ Intermediate facts proved using the have command.

@ Final fact proved using show.



Outline

° Readable Proofs with Isar



Example: Basic Proof in Isar



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp
from 2 have 3: "square (x + y) = square 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -

have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

3 % 3"



Example: Basic Proof in Isar

lemma square_calc:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have 1: "x + y = 1 + 2"

by (simp add: assms) (* Use the assumptions *

from 1 have 2: "x + y = 3"
by simp

from 2 have 3: "square (x + y) = square 3"
by simp

from 3 have 4: "square (x + y)
by (simp add: square_def)

from 4 show "square (x + y) = 9"
by simp

3 % 3"

ged



Proofs Commands



Proofs Commands

Isar Proof Commands (Selection)




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.




Proofs Commands

Isar Proof Commands (Selection)
@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.
@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.
@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.

@ then bring the previously proved fact into scope.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = z.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.

@ assume a: "pred" introduce an assumption named a.




Proofs Commands

Isar Proof Commands (Selection)

@ proof ... ged delimiters for a proof block.

@ show "pred" begin proof to demonstrate a subgoal.

@ have n: "pred" begin proof of an intermediate fact.

@ by tactic one line proof by application of tactic.

@ from n bring an existing named fact into scope for a proof.
@ then bring the previously proved fact into scope.

@ also chain two equalities, x =y, y =z~ x = Z.

@ finally final step in a chain of equality facts.

@ assume a: "pred" introduce an assumption named a.
@ ?thesis schematic variable for current goal predicate.
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Example: Basic Proof in Isar (Alternative)

lemma square_calc_alt:
assumes "x = 1" "y = 2"
shows "square (x + y) = 9"
proof -
have "x + y = 1 + 2"
by (simp add: assms)
then have "x + y = 3"

by simp

hence "square (x + y) = square 3"
by simp

hence "square (x + y) = 3 * 3"

by (simp add: square_def)
then show ?thesis (* or use "thus ?thesis" *)
by simp
ged
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