» Foundations of Types in Isabelle/HOL «

Simon Foster Jim Woodcock
University of York

18th August 2022

Overview

ﬂ Relationship between sets and types
e Defining new types using subsets
© Description operators

° Benefits and limitations of types

Outline

0 Relationship between sets and types

Types as Sets

Types as Sets

@ Every type T has corresponding non-empty set as its universe

Types as Sets

@ Every type T has corresponding non-empty set as its universe

UNIV :: T set

Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set

@ Anyvalue x :: Tis an element of the type’s universe x € UNIV.

Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set
@ Anyvalue x :: Tis an element of the type’s universe x € UNIV.

@ All HOL types have at least one element, hence

Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set

@ Any value x :: Tis an element of the type’s universe x € UNIV.

@ All HOL types have at least one element, hence

Jx.xz € UNIV UNIV_witness

Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set
@ Any value x :: Tis an element of the type’s universe x € UNIV.
@ All HOL types have at least one element, hence
dx.z € UNIV UNIV_witness

@ Types are like maximal sets, the largest set of well-typed members.

Types as Sets

@ Every type T has corresponding non-empty set as its universe
UNIV :: T set
@ Any value x :: Tis an element of the type’s universe x € UNIV.
@ All HOL types have at least one element, hence
dz.x € UNIV UNIV_witness
@ Types are like maximal sets, the largest set of well-typed members.

@ (UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.

Example: Equality Proofs

Example: Equality Proofs

reATl'FzeB

z ¢ f(T) TFACH subsetI

Example: Equality Proofs

voney GEATFoEB o THACB TEBCA oo
TFACpB Subset TFA=RB

Example: Equality Proofs

vowy TEATF2EB o TEACB TDEBCA 00,
TFACpB Subset TFA=RB

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"

Example: Equality Proofs

reATrzeB T-ACB T+HBCA
TEAcCp Subsetl TrA-D

« ¢) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

Example: Equality Proofs

reATrzeB T-ACB T+HBCA
TEAcCp Subsetl TrA-D

« ¢) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean

Example: Equality Proofs

reATrzeB T-ACB T+HBCA
TEAcCp Subsetl TrA-D

« ¢) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"

Example: Equality Proofs

veAlbacB THACB TrBCA
TFACpB Subset TFA=RB

« ¢) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"

show "x € {Atlantic, Pacific, Indian, Arctic}"

Example: Equality Proofs

veAlbacB THACB TrBCA
TFACpB Subset TFA=RB

« ¢) equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

Example: Equality Proofs

reAl'FzeB '-ACB 'FBCA

@ ¢ f(T) subsetI T A—=RB

TEACBH equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
next

Example: Equality Proofs

reAl'FzeB '-ACB 'FBCA

© ¢ i) TFACH subsetI I'FA=2R

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"

show "x € {Atlantic, Pacific, Indian, Arctic}"

by (cases x; simp) (* Automate Case Analysis *)

next

fix x :: ocean

Example: Equality Proofs

reAl'FzeB '-ACB 'FBCA

© ¢ i) TFACH subsetI I'FA=2R

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"

show "x € {Atlantic, Pacific, Indian, Arctic}"

by (cases x; simp) (* Automate Case Analysis *)

next

fix x :: ocean

assume "x € {Atlantic, Pacific, Indian, Arctic}"

Example: Equality Proofs

reAl'FzeB '-ACB 'FBCA

© ¢ i) TFACH subsetI I'FA=2R

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)

fix x :: ocean

assume "x € UNIV"

show "x € {Atlantic, Pacific, Indian, Arctic}"

by (cases x; simp) (* Automate Case Analysis *)

next

fix x :: ocean

assume "x € {Atlantic, Pacific, Indian, Arctic}"

show "x € UNIV"

Example: Equality Proofs

reAl'FzeB '-ACB 'FBCA

© ¢ i) TFACH subsetI I'FA=2R

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
next
fix x :: ocean
assume "x € {Atlantic, Pacific, Indian, Arctic}"
show "x € UNIV"
by (fact UNIV_I)

Example: Equality Proofs

pwyy TEATF2EB THACB TrBCA
’ TFACpB Subset TFA=RB

equalityl

lemma ocean_UNIV: "UNIV = {Atlantic, Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x € UNIV"
show "x € {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)
next
fix x :: ocean
assume "x € {Atlantic, Pacific, Indian, Arctic}"
show "x € UNIV"
by (fact UNIV_I)
ged

Outline

e Defining new types using subsets

Types Definitions

Types Definitions

@ type_synonym, datatype, and record create types.

Types Definitions

@ type_synonym, datatype, and record create types.

@ But there is a low-level mechanism.

Types Definitions
@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.

@ New types can be created from a non-empty subset of an existing type.

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.

@ Use the command typedef:

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:
typedef NT = "A :: T set"by ...

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:
typedef NT = "A :: T set"by ...

@ Requires a proof that the provided set A is non-empty.

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:
typedef NT = "A :: T set"by ...

@ Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:
typedef NT = "A :: T set"by ...
@ Requires a proof that the provided set A is non-empty.
o typedef is used internally by both datatype and record.

@ Generates conversion functions:

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:
typedef NT = "A :: T set"by ...
@ Requires a proof that the provided set A is non-empty.
o typedef is used internally by both datatype and record.
@ Generates conversion functions:

Abs _NT :: T = NT

Types Definitions

@ type_synonym, datatype, and record create types.
@ But there is a low-level mechanism.
@ New types can be created from a non-empty subset of an existing type.
@ Use the command typedef:

typedef NT = "A :: T set"by ...
@ Requires a proof that the provided set A is non-empty.
o typedef is used internally by both datatype and record.
@ Generates conversion functions:

Abs NT :: T = NT

Rep NT :: NT = T.

Types Definitions Visualised

Types Definitions Visualised

typedef NT = "A :: T set" by ...

Types Definitions Visualised

typedef NT = "A :: T set" by ...

Original Type (T)

New Type (NT)

8/21

Conversion Functions

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion Functions

typedef NT = "A :: T set"” by ...

@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.

Conversion Functions

typedef NT = "A :: T set" by
@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.

@ They satisfy:

Conversion Functions

typedef NT = "A :: T set" by
@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.
@ They satisfy:

Abs NT (Rep NTz) ==z

Conversion Functions

typedef NT = "A :: T set" by
@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.
@ They satisfy:

Abs NT (Rep NTz) ==z

z € A= Rep_NT (Abs_NTz) =z

Conversion Functions

typedef NT = "A :: T set" by
@ Conversion functions Abs_NT :: T = NT and Rep_NT :: NT = T.
@ They satisfy:
Abs NT (Rep NTz) ==z

z € A= Rep_NT (Abs_NTz) =z

Rep NTz € A

Example: Definining Non-Zero Numbers (1)

Example: Definining Non-Zero Numbers (1)

Example

Example: Definining Non-Zero Numbers (1)

Example
typedef natl = "{x :: nat. x > O}"

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

@ typedef creates from_natl :: natl = nat.

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.
@ typedef creates from_natl :: natl = nat.

@ That converts a non-zero nat to a nat.

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.
@ typedef creates from_natl :: natl = nat.
@ That converts a non-zero nat to a nat.

@ And to_natl :: nat = natl the does the converse, such that

Example: Definining Non-Zero Numbers (1)

Example

typedef natl = "{x :: nat. x > O}"
morphisms from_natl to_natl
by (rule_tac x="1" in exI, simp)

@ Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.
@ typedef creates from_natl :: natl = nat.

@ That converts a non-zero nat to a nat.

@ And to natl :: nat = natl the does the converse, such that

X >0 — from_natl (to_natl x) = x (to_natl_inverse)

Example: Defining Non-Zero Numbers (2)

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

lemma plusl:
assumes "x > 0" "y > 0"
shows "plusl (to_natl x) (to_natl y) = to_natl (x+y)"
by (simp add: assms plusl_def to_natl_inverse)

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

lemma plusl:
assumes "x > 0" "y > 0"
shows "plusl (to_natl x) (to_natl y) = to_natl (x+y)"
by (simp add: assms plusl_def to_natl_inverse)

@ This process is automated with the lifting package (out of scope).

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

lemma plusl:
assumes "x > 0" "y > 0"
shows "plusl (to_natl x) (to_natl y) = to_natl (x+y)"
by (simp add: assms plusl_def to_natl_inverse)

@ This process is automated with the lifting package (out of scope).

@ But hold on, what is value of to_nat1(®)?

Example: Defining Non-Zero Numbers (2)

@ We can define functions on nat1 by lifting those on nat.

definition plusl :: "natl = natl = natl" where
"plusl x y = to_natl (from_natl x + from_natl y)"

lemma plusl:
assumes "x > 0" "y > 0"
shows "plusl (to_natl x) (to_natl y) = to_natl (x+y)"
by (simp add: assms plusl_def to_natl_inverse)

@ This process is automated with the lifting package (out of scope).
@ But hold on, what is value of to_ nat1(0)?

@ This is underspecified, and so HOL assigns an arbitrary value.

Outline

@ Description operators

Description Operators

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator J

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex::T.Pxalsowrittenas SOME z :: T. P x J

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

er 1. Pxalsowrittenas SOME z :: T. Px
@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

Indefinite Description Operator J

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.
Indefinite Description Operator
ex::T.Pxalsowrittenas SOME z :: T. P x J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.
@ Indefinite article in natural language: “a cat sitting on my roof”.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex::T.Pxalsowrittenas SOME z :: T. P x J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

@ Indefinite article in natural language: “a cat sitting on my roof”.

@ k= (ex.x €{0,1,2,3}): could be 0, 1, 2, or 3.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
er 1. Pxalsowrittenas SOME z :: T. Px J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

@ Indefinite article in natural language: “a cat sitting on my roof”.

@ k= (ex.x €{0,1,2,3}): could be 0, 1, 2, or 3.

@ But we can infer general properties like £ > 0 and k& < 3.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex::T.Pxalsowrittenas SOME z :: T. P x J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

@ Indefinite article in natural language: “a cat sitting on my roof”.

@ k= (ex.x €{0,1,2,3}): could be 0, 1, 2, or 3.

@ But we can infer general properties like £ > 0 and £ < 3.

@ Relies on axiom of choice: can always pick a single element from a set.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex:: T. Pz alsowrittenas SOMEz :: T.Px J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

@ Indefinite article in natural language: “a cat sitting on my roof”.

@ k= (ex.x €{0,1,2,3}): could be 0, 1, 2, or 3.

@ But we can infer general properties like £ > 0 and k& < 3.

@ Relies on axiom of choice: can always pick a single element from a set.
@ If no such = exists, return an arbitrary value of type 7' (e.g. € =. False).

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex:: T. Pz alsowrittenas SOMEz :: T.Px J

@ Hilbert’s choice: pick a value = :: 7" such that P z holds.

@ Indefinite article in natural language: “a cat sitting on my roof”.

@ k= (ex.x €{0,1,2,3}): could be 0, 1, 2, or 3.

@ But we can infer general properties like £ > 0 and k& < 3.

@ Relies on axiom of choice: can always pick a single element from a set.
@ If no such = exists, return an arbitrary value of type 7' (e.g. € =. False).
@ Uncomputable in general, e.g. what is ez :: real. v x © = 27?.

Description Operators
@ No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ex::T.Puxalsowrittenas SOME xz :: T. Px J

Hilbert’'s choice: pick a value = :: T such that P x holds.

Indefinite article in natural language: “a cat sitting on my roof”.

k= (ex.z €{0,1,2,3}): could be 0, 1, 2, or 3.

But we can infer general properties like £ > 0 and & < 3.

Relies on axiom of choice: can always pick a single element from a set.

If no such = exists, return an arbitrary value of type 7' (e.g. € x. Fulse).

Uncomputable in general, e.g. whatis ez :: real. © x © = 27.

Lets us deal with partiality, e.g. to_nat1(0), 2/0, and /—1 (for R).

Reasoning with Indefinite Descriptions

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) LE Pr(tlz Q(ez(%g,(g); Q) someI?2

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q<6P$(?Q7(£>l)_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q<6P$(?Q7(£>l)_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q(er(?’,(g)})_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example

Ik (ez.z€{0,1,2,3})<3

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q(er(?’,(g)})_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example

'k (ez.z €{0,1,2,3}) <3

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q(er(?’,(g)})_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example
T+ ?e{0,1,2,3}
'k (ez.z€{0,1,2,3}) <3

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q(er(?’,(g)})_) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example
T'+o0e{0,1,23}
'k (ez.z €{0,1,2,3}) <3

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) LE Pr(tlz Q(e];(?’,(g)l)_) Q) someI2

@ We need to show some ¢ exists satisfying P to reason about «.

Example
r-0e{0,1,2,3} y€{0,1,2,3},T+y<3
'k (ez.z€{0,1,2,3}) <3

Reasoning with Indefinite Descriptions

@ Here’s an introduction rule for indefinite description:

Introduction Rule

y ¢ v, P,Q) Lo PF(? Q@Z(gﬁi)l)—) QW) somel?2

@ We need to show some ¢ exists satisfying P to reason about «.

Example
T-0e{0,1,2,3} ye{0,1,2,3,T+y<3
'k (ex.z €{0,1,2,3}) <3

@ Very rarely need to reason about description operators direcily.

Example: Indefinite Descriptions

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

'kP(a) P(z),I'Fz=a :
@ ¢ f(P,T) some_equality
'F(ex.Pz)=a

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example
lemma nat_lessl_0: "(SOME x :: nat. x < 1) = 0"

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(®::nat) < 1"

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)

show "(0::nat) < 1" by simp
next

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a

z ¢ f(P,T)

'F(ex.Px)=a

some_equality

Example

lemma nat_lessl_0: "(SOME x :: nat.

proof (rule some_equality)
show "(0::nat) < 1" by simp
next
fix x :: nat

x <1 =0"

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)

show "(0::nat) < 1" by simp
next

fix x :: nat

assume "x < 1"

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a :
@ ¢ f(P,T) some_equality
'F(ex.Px)=a

Example

lemma nat_lessl_0®: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0"

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a

z ¢ f(P,T)

'F(ex.Px)=a

some_equality

Example

lemma nat_lessl_0: "(SOME x :: nat.

proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

x < 1)

®II

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someTI)

I'kP(a) Plz),TFz=a

z ¢ f(P,T)

'F(ex.Px)=a

some_equality

Example

lemma nat_lessl_0: "(SOME x :: nat.

proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

ged

x < 1)

®II

Definite Descriptions

Definite Descriptions

Definite Description Operator

Definite Descriptions

Definite Description Operator
vx TP alsowrittenas THE x :: T. P

Definite Descriptions

Definite Description Operator
vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value z described by P.

Definite Descriptions

Definite Description Operator
vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value = described by P.

@ Like definite article in natural language: “the cat sitting on my roof”.

Definite Descriptions

Definite Description Operator
vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value = described by P.
@ Like definite article in natural language: “the cat sitting on my roof”.

@ Meaningful only when there is precisely one = satisfying P.

Definite Descriptions

Definite Description Operator
vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value = described by P.
@ Like definite article in natural language: “the cat sitting on my roof”.

@ Meaningful only when there is precisely one = satisfying P.

Introduction Rule

Definite Descriptions

Definite Description Operator
vw o T.Pxalsowrittenas THE x :: T. P x

@ Gives the unique value = described by P.
@ Like definite article in natural language: “the cat sitting on my roof”.

@ Meaningful only when there is precisely one = satisfying P.

Introduction Rule

o oar, P, LEED PUOTEI =l _FOMTEQW 4y,

Outline

@ Benefits and limitations of types

Types vs. Sets

Types vs. Sets

@ Types and sets seem quite similar. Why have both?

Types vs. Sets

@ Types and sets seem quite similar. Why have both?

"a setvs.PA,’a x ’bvs. A x Betc.

Types vs. Sets

@ Types and sets seem quite similar. Why have both?
"a setvs.PA,’a x ’bvs. A x Betc.

@ Types resolve problems in naive set theory.

Types vs. Sets

@ Types and sets seem quite similar. Why have both?
"a setvs.PA,’a x ’bvs. A x Betc.
@ Types resolve problems in naive set theory.

@ Russell's paradox:

Types vs. Sets

@ Types and sets seem quite similar. Why have both?
"a setvs.PA,’a x ’bvs. A x Betc.

@ Types resolve problems in naive set theory.

@ Russell’s paradox:

Let R={z |z ¢ z} then R € R < R ¢ R inconsistent!.

Russell's Paradox (Proof Attempt)

Russell's Paradox (Proof Attempt)

'FReR

Russell's Paradox (Proof Attempt)

R_def

I'FReR

Russell's Paradox (Proof Attempt)

I'FRe{z|z ¢}
R_def

I'FReR

Russell's Paradox (Proof Attempt)

mem_Collect_eq

'FRe{z|z ¢z}

R_def
I'FReR

Russell's Paradox (Proof Attempt)

'F(Az.z¢z)R
mem_Collect_eq

'FRe{z|z ¢z}

R_def
I'FReR

Russell's Paradox (Proof Attempt)

[-reduction
F'F(Az.x¢z)R
mem_Collect_eq

'FRe{z|z ¢z}
I'FReR

R_def

Russell's Paradox (Proof Attempt)

I'FR¢R
F'F(Az.x¢z)R

[-reduction

mem_Collect_eq

'FRe{z|z ¢z}
I'FReR

R_def

Russell's Paradox (Proof Attempt)

R_def
'FRER

'F(Az.z¢z)R

[B-reduction

mem_Collect_eq

'FRe{z|z ¢z}

R_def
'FReR

Russell's Paradox (Proof Attempt)

F'Re¢{z|z ¢z}

R_def
'FRER

'F(Az.z¢z)R

[B-reduction

mem_Collect_eq

'FRe{z|z ¢z}

R_def
'FReR

Russell's Paradox (Proof Attempt)

mem_Collect_eq

F'FRé¢{z|z ¢z}
R_def

I'-R¢R
F'F(Az.x¢z)R

[-reduction

mem_Collect_eq

'FRe{z|z ¢z}
R_def

I'ReR

Russell's Paradox (Proof Attempt)

I'F—(R ¢ R)
mem_Collect_eq

F'FRé¢{z|z ¢z}
R_def

I'-R¢R
F'F(Az.x¢z)R

[-reduction

mem_Collect_eq

'FRe{z|z ¢z}
R_def

I'EReR

Russell's Paradox (Proof Attempt)

not_not
I'F=(R ¢ R)
mem_Collect_eq

F'Re¢{z|z ¢z}

R_def
'FRER

'F(Az.z¢z)R

[B-reduction

mem_Collect_eq

'FRe{z|z ¢z}

R_def
I'FReR

Russell's Paradox (Proof Attempt)

I'FReR
I'F—(R ¢ R)

not_not

mem_Collect_eq

F'Re¢{z|z ¢z}

R_def
'FRER

'F(Az.z¢z)R

[B-reduction

mem_Collect_eq

'FRe{z|z ¢z}

R_def
I'FReR

Russell's Paradox (Proof Attempt)

I'FReR
I‘k-ﬁ(R ¢AR)

not_not

mem_Collect_eq
'FRé¢{z|z ¢z}
R_def

I'-R¢R
F'F(Az.x¢z)R

[-reduction

mem_Collect_eq

'FRe{z|z ¢z}
R_def

I'FReR

Russell's Paradox (Proof Attempt)

4
'-ReR
I'F—(R ¢ R)

not_not

mem_Collect_eq
'FRé¢{z|z ¢z}
R_def

I'-R¢R
F'F(Az.x¢z)R

[-reduction

mem_Collect_eq

'FRe{z|z ¢z}
R_def

I'EReR

Types vs. Sets

Types vs. Sets

@ Types and sets seem quite similar — why have both?

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

Types vs. Sets

@ Types and sets seem quite similar — why have both?
@ Types resolve problems in naive set theory.
@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.
@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.
@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.
@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

@ But no equivalents for types.

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.
@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

@ But no equivalents for types.

@ Type checking = :: 7" is decidable, but = € A requires proof.

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.
@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

@ But no equivalents for types.

@ Type checking = :: 7" is decidable, but = € A requires proof.

@ In general, types improve automation by enforcing specific patterns.

Types vs. Sets

@ Types and sets seem quite similar — why have both?

@ Types resolve problems in naive set theory.

@ Russell's paradox: let R ={z |z ¢ z}then R € R < R ¢ R.

@ Excluded by HOL since = € z and =z ¢ z are both ill-typed.

@ Sets are more flexible, e.g. we can have AU Band A C B

@ But no equivalents for types.

@ Type checking = :: 7" is decidable, but = € A requires proof.

@ In general, types improve automation by enforcing specific patterns.

@ Conclusion: We need both. It takes experience to know which to use.

Conclusion

Conclusion

This Lecture

Conclusion

This Lecture
@ Relationship between sets and types.

Conclusion

This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.

Conclusion

This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.
@ Description operators.

Conclusion

This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.
@ Description operators.
@ Benefits and limitations of types.

Conclusion

This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.
@ Description operators.
@ Benefits and limitations of types.

Next Lecture

Conclusion

This Lecture
@ Relationship between sets and types.

@ Defining new types using subsets.
@ Description operators.
@ Benefits and limitations of types.

Next Lecture
@ Automation and sledghammer.

	Relationship between sets and types
	Defining new types using subsets
	Description operators
	Benefits and limitations of types

