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Motivation
The Z notation is a rich specification language:

IncubatorMonitor
temp : Z

MIN ≤ temp ≤ MAX

Increment
∆IncubatorMonitor

temp < MAX
temp ′ = temp + 1

This flexibility can however make it difficult to automate in practice.
Z Machines: restricted subset of Z in Isabelle/HOL (like Event-B).
A design pattern for the more general Z language.
Closer to an implementation and requires some design decisions.
Careful handling of types vs. set dichotomy, which is less visible in Z.
Includes support for (1) proof obligation generation and (2) animation.
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Example: Dwarf Signal Types (Z)

LampId ::= L1 | L2 | L3

dark , stop,warning , drive : FLampId

dark = ∅
stop = {L1,L2}
warning = {L1,L3}
drive = {L2,L3}

ProperState == {dark , stop,warning , drive}

Signal == FLampId
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Stores
A store is a set of variable declarations to be present in the state.
Corresponds to a state schema in Z (no dashed variables).

Introduces several state components (x, y, z) and invariants.

Invariants can be optionally named and are collected in state inv.
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State Schema and ZStore
Dwarf
last proper state : ProperState
turn off , turn on : FLampId
last state, current state : Signal
desired proper state : ProperState

(current state \ turn off ) ∪ turn on = desired proper state
turn off ∩ turn on = ∅
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State Schema and ZStore
Dwarf
last proper state : ProperState
turn off , turn on : FLampId
last state, current state : Signal
desired proper state : ProperState

(current state \ turn off ) ∪ turn on = desired proper state
turn off ∩ turn on = ∅

zstore Dwarf =
last_proper_state :: "ProperState"

turn_off :: "LampId set"

turn_on :: "LampId set"

last_state :: "Signal"

current_state :: "Signal"

desired_proper_state :: "ProperState"

where
"(current_state - turn_off) ∪ turn_on = signalLamps desired_proper_state"
"turn_on ∩ turn_off = {}"
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Dwarf Signal Requirements Schema

NeverShowAll
Dwarf

current state 6= {L1,L2,L3}
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MaxOneLampChange
ForbidStopToDrive
DarkOnlyToStop
DarkOnlyFromStop
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Dwarf Signal Requirements Schema

NeverShowAll
Dwarf

current state 6= {L1,L2,L3}

DwarfSignal
NeverShowAll
MaxOneLampChange
ForbidStopToDrive
DarkOnlyToStop
DarkOnlyFromStop

We deal with these separately in Z Machines.
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Operations
zoperation corresponds to a Z operation schema, but restricted.
Inputs (a?) and outputs (b!) are modelled by parameters.

Parameters come from sets, not types. Can depend on the state.

Preconditions can depend only on the undashed before state.

Assignments update variables. Unmentioned variables unchanged.

State invariants are not imposed; we need to prove they are preserved.

Much closer to an implementation of the model.
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Operation to Set New Proper State

SetNewProperState
∆DwarfSignal
st? : ProperState

current state = desired proper state
st? 6= current state
last proper state ′ = current state
turn off ′ = current state \ st?
turn on ′ = st? \ current state
last state ′ = current state
current state ′ = current state
desired proper state ′ = st?
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Operation to Set New Proper State

SetNewProperState
∆DwarfSignal
st? : ProperState

current state = desired proper state
st? 6= current state
last proper state ′ = current state
turn off ′ = current state \ st?
turn on ′ = st? \ current state
last state ′ = current state
current state ′ = current state
desired proper state ′ = st?

zoperation SetNewProperState =

over Dwarf
params st∈"ProperState -

{desired_proper_state}"

pre "current_state =

signalLamps desired_proper_state"

update "[

last_proper_state’ =

desired_proper_state

,turn_off’ =

current_state - signalLamps st

,turn_on’ =

signalLamps st - current_state

,last_state’ =

current_state

,desired_proper_state’ = st]"
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Machines and Animation
Often implicit in the Z notation; the set of all operations.

Generates an interaction tree semantics, for animation.

Animate using animate command. Useful for design-space exploration.

Sets initial state, checks which operations + parameters are enabled.

For animation, parameters should typically be drawn from a finite set.
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Verification and Proof Obligations
Requirements specified as machine invariants (cf. DwarfSignal ).
Machine verification requires we demonstrate:
1 The initial state assignment establishes the invariants.
2 Each operation preserves the invariants.

Specified as Hoare conjectures: {state inv}Op1(x , y , z ) {state inv}.
Proof obligations can be generated using method zpog full.

Weakest preconditions; every operation is a constrained assignment.

For large models, manage proof obligations using Isar and explore.
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Example: Dwarf Operations

lemma "Init establishes Dwarf_inv"
by zpog_full

lemma "(SetNewProperState p) preserves Dwarf_inv"
by (zpog_full; auto)
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Managing Requirements

Requirements characterised by named assertions using zexpr.

System documentation and safety argumentation.

Show that each operation preserves safety invariants (or fails to).

Req1Failed is a litmus test for req1; enabled if req1 fails.

Test using animator. Verify using proof obligation generator.
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