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Automated Proof so Far: Simplifier (simp)

Equational rewriting of propositions (f (x , y) = g(x , y)).
Very fast, and can prove many statements.
Can’t generally handle formulae with quantifiers (∃ x y . 2x + 3y > n).
Classical Reasoner (blast, auto, force, etc.).
Employs the tableau method to find natural deduction proofs.
Slower than the simplifier, due to backtracking, but more powerful.
Can prove many statements involving quantifiers with witnesses.
However, these tools are often not enough, for example:
Finding of suitable witnesses for variables in quantified formulae.
Determining the right set of rules to use from HOL’s theorem library.
Isabelle/HOL integrates reasoning tools for constrained problems.
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SAT Solvers
Determine satisfiability of proposition with only Boolean variables.

P ∧ ¬Q – satisfiable, with P = True and Q = False (the assignment).

P ∧ ¬P – not satisfiable, no value for P that yields True.

A SAT solver typically returns :

1. SAT + an assignment or 2. UNSAT

NP-complete problem.

Very efficient solvers exist handling millions of variables.

MiniSat, zChaff, PicoSAT, BerkMin, Lingeling, Glucose, SAT4J.

Widely used in hardware verification and circuit design.

Instance of constraint satisfaction problems (see module CONS).
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Resolution Provers
Resolution: deduction rule + algorithm for proving 1st-order predicates.
Modern SAT solvers can produce a resolution-based proof of UNSAT.
Resolution implemented in some 1st-order automated theorem provers:
Prover9, E, Vampire, SPASS, Waldmeister, and the metis proof method.
Clause normal form represents knowledge: conjunction of disjunctions.
Inherently classical in nature, as it depends on proof by contradiction.
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Resolution
metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
If a refutation of ¬G emerges, this is translated to a HOL theorem.
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Resolution

Algorithm (Outline)
1 Hypotheses A1 · · ·An and goal G : produce A1 ∧ · · · ∧ An ∧ ¬G .
2 Rewrite Ai and G into CNF: P ∧ (P −→ Q) becomes P ∧ (¬P ∨ Q).
3 Apply the resolution rule over and over to make all possible deductions:
4 If a contradiction emerges, then G must follow from the assumptions.

metis converts HOL proposition into required form, applies resolution.
Requires all background theorems needed to be passed as hypotheses.
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Resolution Example

We want to prove man(S ), ∀ x .man(x ) −→ mortal(x ) ` mortal(S ).

Rewrite to CNF gives

A1 = man(S ), A2 = ¬man(x ) ∨ mortal(x ), G = mortal(S ).

We need to show A1 ∧ A2 ∧ ¬G yields a contradiction.

Resolving A1 and A2 yields the additional clause A3 = mortal(S ).

Resolving A3 and G yields the empty set, thus the proof is complete.
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SMT Solvers

SMT = Satisfiability Modulo Theories.

Extends SAT with further types and decision procedures.

Quantifiers, linear arithmetic, bit vectors, arrays, datatypes, records, etc.

UNSAT: proof term often returned using accompanying ATP.

More readily applicable to program verification.

Examples: Z3, Yices, CVC3, CVC4, veriT.

Z3 is the backend for Microsoft’s Boogie verification language.

Isabelle/HOL integrates several SMT solvers in the smt proof method.

Reconstructs proof terms output from CVC4, veriT, and Z3.
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Sledgehammer Workflow
1 Formulate a theorem we want to prove:

lemma "(A < B)= (A !6=! B !∧! (!∀! x!∈!A. x !∈! B))"
2 Run sledgehammer with set of provers and solvers (click “Apply”).

3 Click on one of the options returned to prove the theorem:

lemma "(A < B) = (A 6= B ∧ (∀ x∈A. x ∈ B))"
by (metis (no_types, lifting) less_le subset_iff)
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fixes x :: rat
shows "x2 - 3*x + 2 < 0 −→ x > 0"
by (metis add_less_zeroD add_neg_neg
diff_add_cancel less_iff_diff_less_0
mult_less_cancel_right_disj
not_numeral_less_zero power2_eq_square)

lemma tl_element:
assumes "x ∈ set xs" "x 6= hd(xs)"
shows "x ∈ set(tl(xs))"
by (metis assms(1) assms(2) list.exhaust_sel
list.sel(2) set_ConsD)
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Sledgehammer Examples (2)

lemma sorted_distinct:
assumes "sorted xs" "distinct xs"
shows "(∀ i<length xs - 1. xs i < xs(i + 1))"

using assms proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
by (simp, metis Suc_leI Suc_le_lessD diff_less
less_nat_zero_code linorder_le_less_linear
not_one_le_zero nth_Cons’ nth_Cons_Suc
nth_equal_first_eq order_less_le sorted_wrt_nth_less
strict_sorted_iff)

qed
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This states that all natural numbers are greater than 5. Not provable.

Possible counterexamples are x = 0, x = 1, x = 2 etc.
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Auto Quickcheck found a counterexample: x = 0.

quickcheck: quick debugger for theorem specifications.
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Quickcheck and Lists

This theorem is not correct – we forgot to reorder xs and ys.

lemma rev_app: "rev (xs @ ys) = rev xs @ rev ys"

quickcheck quickly finds the following counterexample:

Auto Quickcheck found a counterexample:
xs = [a]
ys = [b]

Evaluated terms:
rev (xs @ ys) = [b, a]
rev xs @ rev ys = [a, b]
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No list has five distinct elements that are all even:
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Nitpick
Counterexample generator based on a SAT solver.
Negate the theorem, and pass to the Kodkod relational constraint solver.
KodKod successfully applied to software verification.
Example: Hotel Key Card problem.
Tries to find a finite model that falsifies the theorem.
Converts the constraint problem into a SAT solver.
Tries SAT4J, MiniSat to solve the problem.
More suited to set theoretic problems than quickcheck.
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