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Motivation
The simp tactic uses equations (s = t) to rewrite and simplify a goal.
Proof by simplification is the gold standard for efficiency and usability.
But it’s not always possible to prove a goal with just the simplifier.
Isabelle provides tactics for automating natural deduction.
One of the core reasoning techniques, alongside the simplifier.
You need to understand the use of low-level proof scripts.

Proof Script
lemma "P =⇒ (P ∧ (P ∨ Q))"
apply (rule conjI)
apply assumption
apply (rule disjI1)
apply assumption
done
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Proof Scripts and Tactics
Low-level proof language are the “machine code” for Isar.
Proof script: sequence of commands acting on a proof state.
Proof state: subgoals.
Subgoals: collection of hypotheses and outstanding conjectures.
Commands invoke proof tactics to decompose and refine the goals.

Proof script uses the apply keyword to execute a tactic.
Tactics can fail if the subgoal is in the wrong form.
Proof is complete once all subgoals are eliminated.
Script terminated with done (cf. qed).
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Proof State
The proof state consists of n subgoals.
The aim is to discharge (remove by proof) all remaining subgoals.
Subgoals have the form JP1; · · · ; PnK =⇒ Q.
P1 · · ·Pn is a set of hypotheses – can be used to prove the subgoal.
Q is the conclusion of the subgoal; the thing to be proved.
assumes P1 ... Pn shows Q creates a single initial subgoal:

JP1; · · · ; PnK =⇒ Q
Tactics often act on the first subgoal, but some act on all (simp all).
We can manipulate a subgoal in several ways:
Split into several additional subgoals by introduction or elimination.
Manipulate the assumptions or insert further ones, e.g. from theorems.
Discharge trivial subgoals, e.g. True or P =⇒ P using assumption.
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Natural Deduction
Natural Deduction Rules

Γ ` P1 Γ ` P2 · · ·Γ ` Pn

Γ ` Q

Meaning: a proof of the conclusion Q follows from premises P1 · · ·Pn.
Γ ` Q is a sequent: valid when Q holds subject to the hypotheses in Γ.

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Two main kinds of deduction rules:
1 Introduction rules (rule tactic): backwards reasoning.
2 Elimination rules (erule tactic): forwards reasoning.
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Introduction Rules
Question: how do we prove the conclusion P?
By finding subgoals P1 · · ·Pn, based on current subgoal’s conclusion.
Proof by introduction is often called backwards reasoning.

Introduction Rules
Γ ` P Γ ` Q conjI

Γ ` P ∧ Q
–

TrueI
Γ ` True

Γ ` P disjI1
Γ ` P ∨ Q

Γ ` Q disjI2
Γ ` P ∨ Q

Invoke introduction rules using the rule tactic, e.g. apply(rule conjI).
Matches subgoal’s conclusion, copies any hypotheses to new subgoals.
Most rules are safe introduction rules, but disjI1 and disjI2 aren’t.
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Matches subgoal’s conclusion, copies any hypotheses to new subgoals.
Most rules are safe introduction rules, but disjI1 and disjI2 aren’t.
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Example: Proof by Introduction

Natural Deduction Proof

−
asm
P ` P

−
asm
P ` PdisjI1

P ` P ∨ Q
conjI

P ` P ∧ (P ∨ Q)

Proof Script
lemma "P =⇒ (P ∧ (P ∨ Q))"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjI1)
apply assumption
done
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Example: Proof by Introduction (Again)

Proof State

lemma "P =⇒ (P ∧ (P ∨ Q))"
apply (rule conjI)
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply (rule disjI1)
apply assumption
done
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More Introduction Rules

Introduction Rules
P,Γ ` Q

impI
Γ ` P −→ Q

Γ ` P −→ Q Γ ` Q −→ P
iffI

Γ ` P ←→ Q
–

refl
Γ ` t = t

lemma "P −→ (P ∧ (True = True))"
apply (rule impI) (* P =⇒ (P ∧ (True = True)) *)
apply (rule conjI) (* P =⇒ P and P =⇒ (True = True)) *)
apply (assumption) (* P =⇒ (True = True)) *)
apply (rule refl)
done
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Elimination Rules
What can we deduce from hypothesis Pi? Refine a subgoal.

Elimination Rules for Propositional Calculus
P,Q,Γ ` R

conjE
P ∧ Q,Γ ` R

P,Γ ` R Q,Γ ` R
disjE

P ∨ Q,Γ ` R

Γ ` P Q,Γ ` R
impE

P −→ Q,Γ ` R
P −→ Q,Q −→ P,Γ ` R

iffEP ←→ Q,Γ ` R

P ∧ Q JP; QK =⇒ R
conjE

R
P ∨ Q P =⇒ R Q =⇒ R

disjE
R

P −→ Q P Q =⇒ R impE
R

P ←→ Q JP −→ Q; Q −→ PK =⇒ R
iffER

Elimination rules use erule tactical apply (erule conjE).
Find first hypothesis matching first premise of elimination rule.
Replace subgoal with remaining premises: JP; QK =⇒ R.
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Example: Proof by Elimination (1)
How do we prove P ∧ (P −→ Q) −→ Q?

Natural Deduction Proof
−

asm
P =⇒ P

−
asm
JP; QK =⇒ Q

impE
J(P −→ Q); PK =⇒ Q
conjE
P ∧ (P −→ Q) =⇒ Q
impI
P ∧ (P −→ Q) −→ Q

Proof Script

lemma "P ∧ (P −→ Q) −→ Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply assumption
done
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Example: Proof by Elimination (2): (P ∧ P)←→ P
−

asm
JP; PK =⇒ P
conjE
P ∧ P =⇒ P

−
asm
P =⇒ P

−
asm
P =⇒ PconjI

P =⇒ P ∧ P
iffI

(P ∧ P)←→ P

Proof Script
lemma "(P ∧ P) ←→ P"
apply (rule iffI)
apply (erule conjE)
apply assumption
apply (rule conjI)
apply assumption
apply assumption
done
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Outline
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Natural Deduction in Isar

lemma "P ∧ (P −→ Q) −→ Q"
proof (rule impI)
assume "P ∧ (P −→ Q)"
hence "P −→ Q" "P"
by (erule_tac conjE, simp_all)

thus "Q"
by (erule_tac impE, simp_all)

qed

Benefit of being readable without seeing the proof state.
A little too verbose for simple predicates.
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Automating Natural Deduction
Isn’t all this low level deduction too much work?
Fortunately, Isabelle automates natural deduction using the blast tactic.
Tableaux prover: represent proof tree structure.

Example
lemma "P −→ (P ∧ (P ∨ Q))" by blast
lemma "P ∧ (P −→ Q) −→ Q" by blast

Blast searches proof tree using introduction and elimination rules.
blast intro: thms elim: thms, or [intro], [elim], and [dest].
Safe rules marked with “!”, e.g. [intro!].
Unsafe rules applied only when no alternative.
Blast is one-shot: all or nothing.
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Combining Deduction and Simplification with Auto

auto is a powerful tactic combining deduction (e.g., blast) and simp.
Not one-shot: applies safe rules repeatedly, simplifying if possible.
Won’t lose information as long as the specified safe rules are truly safe.
General technique for breaking a complex goal into several parts.

lemma "(x::nat) = y2 −→ x ≥ y ∧ x ≥ 0"
by (auto simp add: power2_nat_le_imp_le)

There are also one-shot variants: force and fastforce.
auto can produce unpredictable and bizarre results.
Still need manual deduction to understand why automated proof fails.
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Applications

We looked at automating natural deduction in the propositional calculus.

We demonstrated a far more general technique.

We define bespoke logics in Isabelle and then reason about them.

In particular, we can program verification (e.g., Hoare logic).

Natural deduction is an important weapon in the proof arsenal.
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Conclusion

This Lecture
Apply-style proof scripts.
Natural deduction in Isabelle/HOL.
The classical reasoner.

Next Lecture
Predicate calculus (quantifiers etc.).
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