» Functional Programming in Isabelle/HOL «

Simon Foster Jim Woodcock
University of York

16th August 2022

Overview

0 HOL as a Functional Programming Language
a Type System

e Algebraic Datatypes

° Recursive Functions

6 Code Generator

Overview

° HOL as a Functional Programming Language

Functional Programming

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).

@ Origin: A-calculus, formal system for computation A x : N. x + 1.

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).
@ Origin: A-calculus, formal system for computation A x : N. x + 1.

@ Functional # imperative.

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).
@ Origin: A-calculus, formal system for computation A x : N. x + 1.
@ Functional # imperative.

@ Functions are side-effect free: everything captured by output type B.

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).
@ Origin: A-calculus, formal system for computation A x : N. x + 1.

@ Functional # imperative.

@ Functions are side-effect free: everything captured by output type B.

@ No first-class notion of assignment (x := e) or iteration (while b do S).

Functional Programming

@ Paradigm: computations expressed as mathematical functions (A = B).
@ Origin: A-calculus, formal system for computation A x : N. x + 1.

@ Functional # imperative.

@ Functions are side-effect free: everything captured by output type B.

@ No first-class notion of assignment (x := e) or iteration (while b do S).
°

Recursion instead of iteration.

Functional Programming

Paradigm: computations expressed as mathematical functions (A = B).
Origin: A-calculus, formal system for computation A x : N. x + 1.

Functional # imperative.

No first-class notion of assignment (x := e) or iteration (while b do S).

°
°
°
@ Functions are side-effect free: everything captured by output type B.
°
@ Recursion instead of iteration.

°

Functions can also be higher order: taking functions as arguments.

Functional Programming

Paradigm: computations expressed as mathematical functions (A = B).
Origin: A-calculus, formal system for computation A x : N. x + 1.

Functional # imperative.

°
°

°

@ Functions are side-effect free: everything captured by output type B.
@ No first-class notion of assignment (x := e) or iteration (while b do S).
@ Recursion instead of iteration.

@ Functions can also be higher order: taking functions as arguments.

o

Languages: Haskell, SML, F#, Clojure, Erlang, OCaml, Lisp.

Functional Programming

Paradigm: computations expressed as mathematical functions (A = B).
Origin: A-calculus, formal system for computation A x : N. x + 1.
Functional # imperative.

Functions are side-effect free: everything captured by output type B.

°
°
°
°
@ No first-class notion of assignment (x := e) or iteration (while b do S).
@ Recursion instead of iteration.

@ Functions can also be higher order: taking functions as arguments.

@ Languages: Haskell, SML, F#, Clojure, Erlang, OCaml, Lisp.

o

Functional features: Python, Scala, Java, Go, Rust, C#.

Higher Order Logic

Higher Order Logic

@ Statically typed functional specification and programming language.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).
@ Functional programming ideally suited to verification, e.g., induction.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.
v Type variables (cf. generics).

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.
v Type variables (cf. generics).
v/ Polymorphic type classes and overloading.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.
v Type variables (cf. generics).
v/ Polymorphic type classes and overloading.
X Type constructor parameters, and more exotic type system features.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.
v Type variables (cf. generics).
v/ Polymorphic type classes and overloading.
X Type constructor parameters, and more exotic type system features.

@ Isabelle supports proofs. Haskell doesn’t.

Higher Order Logic

@ Statically typed functional specification and programming language.
@ Like Haskell, but closer to its older cousin ML (meta-language).

@ Functional programming ideally suited to verification, e.g., induction.
@ Not everything need be executable; e.g., uncountably infinite sets.

Haskell Similarities
v Algebraic datatypes and recursive functions.
v Type variables (cf. generics).
v/ Polymorphic type classes and overloading.
X Type constructor parameters, and more exotic type system features.

@ Isabelle supports proofs. Haskell doesn’t.
@ Isabelle has uncomputable objects: R, \/x, T, etc.

Overview

a Type System

Fundamental Types of HOL

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.

Fundamental Types of HOL
@ Booleans (bool or B): True or False, A, V, =, —.
@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.

Arithmetic operators: +, —, *, n?, /.

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.
@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

@ For example: A x :: nat. x + 1 has the type nat = nat.

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

@ For example: A x :: nat. x + 1 has the type nat = nat.

@ Pairs (A x B): (x,y)forx :: Aand y :: B:

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

@ For example: A x :: nat. x + 1 has the type nat = nat.

@ Pairs (A x B): (x,y)forx :: Aand y :: B:

@ Selectors: fst(x,y) = x and snd(x,y) = y.

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

@ For example: A x :: nat. x + 1 has the type nat = nat.

@ Pairs (A x B): (x,y)forx :: Aand y :: B:

@ Selectors: fst(x,y) = x and snd(x,y) = y.

@ Can be nested for n-tuples, e.g. A; x A X Az x -+ X Ap.

Fundamental Types of HOL

@ Booleans (bool or B): True or False, A, V, =, —.

@ Natural numbers (nator N): 0,1,2,3,4--- or Suc0, Suc (Suc0) etc.
Arithmetic operators: +, —, *, n?, /.

@ Total functions (A = B):

@ Values: \ x. f(x) — A-abstraction (aka anonymous functions, closures).

@ For example: A x :: nat. x + 1 has the type nat = nat.

@ Pairs (A x B): (x,y)forx :: Aand y :: B:

@ Selectors: fst(x,y) = x and snd(x,y) = y.

@ Can be nested for n-tuples, e.g. A; x A X Az x -+ X Ap.

@ Explicitly assign type to term: type coercision, x :: T.

Example: Evaluating Terms

Example: Evaluating Terms

value "True A False" (* Returns False *)

Example: Evaluating Terms

value "True A False" (* Returns False *)

value "True V False" (* Returns True *)

Example: Evaluating Terms

value "True A False" (* Returns False *)
value "True V False" (* Returns True *)

value "(3::nat) + 2" (* Returns 5 *)

Example: Evaluating Terms

value "True A False" (* Returns False *)
value "True V False" (* Returns True *)
value "(3::nat) + 2" (* Returns 5 *)

value "(\ x::nat. x + 1) 6" (* Returns 7 *)

Example: Evaluating Terms

value "True A False" (* Returns False *)
value "True V False" (* Returns True *)
value "(3::nat) + 2" (* Returns 5 ¥)

value "(\ x::nat. x + 1) 6" (*¥ Returns 7 *)

value "()\ x::nat. x° + 1) 6" (* Returns 37 *)

Example: Evaluating Terms

value "True A False" (* Returns False *)
value "True V False" (* Returns True *)
value "(3::nat) + 2" (* Returns 5 ¥)

value "(\ x::nat. x + 1) 6" (*¥ Returns 7 *)
value "()\ x::nat. x° + 1) 6" (* Returns 37 *)

value "(M\ (x::nat,y::nat). x*y) (6,7)" (* Returns 42 *)

Example: Evaluating Terms

value "True A False" (* Returns False *)

value "True V False" (* Returns True *)

value "(3::nat) + 2" (* Returns 5 ¥)

value "(\ x::nat. x + 1) 6" (* Returns 7 *)

value "()\ x::nat. x° + 1) 6" (* Returns 37 *)

value "(M\ (x::nat,y::nat). x*y) (6,7)" (* Returns 42 *)

value "fst (2::nat, False) * 3" (* Returns 6 *)

Basic Commands

Basic Commands
@ Create new types as synonyms for existing types:

type_synonym nat_pair = "(nat X nat)"

Basic Commands
@ Create new types as synonyms for existing types:
type_synonym nat_pair = "(nat X nat)"

@ Create new simple functions:

definition add_pair :: "nat_pair = nat"

"add_pair = (A(x, y). x + y)"

definition square :: "nat = nat" where

oo 1]

"square x = x * X

where

Basic Commands
@ Create new types as synonyms for existing types:
type_synonym nat_pair = "(nat X nat)"
@ Create new simple functions:

definition add_pair :: "nat_pair = nat" where
"add_pair = (A (x, y). x + y)"

definition square :: "nat = nat" where

oo 1]

"square x = x * X
@ Type check functions using term and evaluate them using value:

term "add_pair (3, 5)" (* Returns nat *)
value "add_pair (3, 5)" (* Returns 8 ¥)

Polymorphism

Polymorphism

@ Types contain type parameters of the form "a, "b, ’c etc.

Polymorphism

@ Types contain type parameters of the form "a, "b, ’c etc.
@ Instantiated to ground types (i.e., types without variables):

type_synonym ’'a bag = a = nat"

Polymorphism

@ Types contain type parameters of the form "a, "b, ’c etc.
@ Instantiated to ground types (i.e., types without variables):

type_synonym ’'a bag = a = nat"

@ Instantiations: bool = nat; nat = nat; natxnat = nat etc.

Polymorphism

@ Types contain type parameters of the form "a, "b, ’c etc.
@ Instantiated to ground types (i.e., types without variables):

type_synonym ’'a bag = a = nat"

@ Instantiations: bool = nat; nat = nat; natxnat = nat etc.

@ Checked with the command typ, e.g. typ "nat bag"

Polymorphism

@ Types contain type parameters of the form "a, "b, ’c etc.
@ Instantiated to ground types (i.e., types without variables):

type_synonym ’'a bag = a = nat"

@ Instantiations: bool =- nat; nat = nat; natxnat = nat etc.
@ Checked with the command typ, e.g. typ "nat bag"
@ We define polymorphic functions over such types.

definition empty_bag "
"empty_bag = (A x. 0)"

a bag" where

definition add_bag :: "’a bag = ’a bag = ’a bag"
where "add_bag A B = (A x. A x + B x)"

Overview

9 Algebraic Datatypes

Algebraic Datatypes

Algebraic Datatypes

@ Types are built using disjoint constructors.

datatype T = C1 P1 | C2 P2 | C3 P3 |

Algebraic Datatypes

@ Types are built using disjoint constructors.
datatype T = C1 P1 | C2 P2 | C3 P3 |

@ Constructors take parameters that can be self-referential.

Algebraic Datatypes

@ Types are built using disjoint constructors.
datatype T = C1 P1 | C2 P2 | C3 P3 |

@ Constructors take parameters that can be self-referential.
@ Datatypes can be parametric, with type parameters denoted as ’a etc.

datatype nat = Zero | Suc nat

Algebraic Datatypes

@ Types are built using disjoint constructors.
datatype T = C1 P1 | C2 P2 | C3 P3 |

@ Constructors take parameters that can be self-referential.
@ Datatypes can be parametric, with type parameters denoted as ’a etc.

datatype nat = Zero | Suc nat

@ Two constructors: Zero :: nat and Suc :: nat = nat.

Algebraic Datatypes

@ Types are built using disjoint constructors.
datatype T = C1 P1 | C2 P2 | C3 P3 |

@ Constructors take parameters that can be self-referential.
@ Datatypes can be parametric, with type parameters denoted as ’a etc.

datatype nat = Zero | Suc nat

@ Two constructors: Zero :: nat and Suc :: nat = nat.

@ Examples: Zero, Suc Zero, Suc (Suc Zero).

Inductive Lists

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.

@ Here, we assign Nil the (optional) syntax [] and Cons infix operator #.

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.
@ Here, we assign Nil the (optional) syntax [] and Cons infix operator #.

@ Example

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.
@ Here, we assign Nil the (optional) syntax [] and Cons infix operator #.
@ Example

1 # 2 # [] :: nat listand True # False # [] :: bool list

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.
@ Here, we assign Nil the (optional) syntax [] and Cons infix operator #.
@ Example

1 # 2 # [] :: nat listand True # False # [] :: bool list

@ Syntactic sugar for

Inductive Lists

@ Aninductive list is either empty, or a head followed by a tail.

datatype ’a list =
Nil ("[]1") | Cons ’a "’a list" (infixr "#" 65)

@ Alistis empty Nil or an element of type "a followed by a list Cons.
@ Here, we assign Nil the (optional) syntax [] and Cons infix operator #.
@ Example

1 # 2 # [] :: nat listand True # False # [] :: bool list
@ Syntactic sugar for

Cons 1 (Cons 2 Nil) and Cons True (Cons False Nil)

More Datatype Examples

More Datatype Examples

datatype ocean = Atlantic | Arctic | Indian | Pacific

More Datatype Examples

datatype ocean = Atlantic | Arctic | Indian | Pacific

datatype ’'a option = None | Some ’a

More Datatype Examples

datatype ocean = Atlantic | Arctic | Indian | Pacific
datatype ’'a option = None | Some ’a

Empty

datatype ’a tree =
| Leaf ’a
I

Node "’a tree" "’a tree"

Functions

Functions
@ Function f built by pattern matching on algebraic datatype.

Functions
@ Function f built by pattern matching on algebraic datatype.

@ Patterns have one or more constructors and variables for parameters.

Functions
@ Function f built by pattern matching on algebraic datatype.

@ Patterns have one or more constructors and variables for parameters.

@ Definition of f consists of equations f(C x) = G(x).

Functions
@ Function f built by pattern matching on algebraic datatype.

@ Patterns have one or more constructors and variables for parameters.
@ Definition of f consists of equations f(C x) = G(x).

@ Overlapping patterns evaluated in the order they’re given.

Functions
@ Function f built by pattern matching on algebraic datatype.

@ Patterns have one or more constructors and variables for parameters.
@ Definition of f consists of equations f(C x) = G(x).
@ Overlapping patterns evaluated in the order they’re given.

@ Test for zero:

fun is_zero :: "nat = bool" where
"is_zero (Suc x) = False" | "is_zero Zero = True"

Functions
@ Function f built by pattern matching on algebraic datatype.

@ Patterns have one or more constructors and variables for parameters.
@ Definition of f consists of equations f(C x) = G(x).
@ Overlapping patterns evaluated in the order they’re given.

@ Test for zero:

fun is_zero :: "nat = bool" where
"is_zero (Suc x) = False" | "is_zero Zero = True"

@ Number the oceans:

fun num_ocean :: "ocean = nat" where
"num_ocean Atlantic = 1" | "num_ocean Pacific = 2" |
"num_ocean Indian = 3" | "num_ocean Arctic = 4"

Overview

@ Recursive Functions

Recursive Functions

Recursive Functions
@ Define a function by recursion over the algebraic datatype T1

fun rf :: "T1 = T2" where
"rf (C1 x) = V1" | "rf (C2 x) = V2" |

Recursive Functions
@ Define a function by recursion over the algebraic datatype T1

fun rf :: "T1 = T2" where
"rf (C1 x) = V1" | "rf (C2 x) = V2" |

@ Match the input against the first equation satisfying the pattern.

Recursive Functions
@ Define a function by recursion over the algebraic datatype T1

fun rf :: "T1 = T2" where
"rf (C1 x) = V1" | "rf (C2 x) = V2" |
@ Match the input against the first equation satisfying the pattern.
@ Isabelle checks that all possibilities for T1 are covered by an equation.
fun plus :: "nat = nat = nat" where

"plus Zero n = n" |
"plus (Suc m) n = Suc (plus m n)"

Recursive Functions
@ Define a function by recursion over the algebraic datatype T1

fun rf :: "T1 = T2" where
"rf (C1 x) = V1" | "rf (C2 x) = V2" |

@ Match the input against the first equation satisfying the pattern.
@ Isabelle checks that all possibilities for T1 are covered by an equation.

fun plus :: "nat = nat = nat" where
"plus Zero n = n" |
"plus (Suc m) n = Suc (plus m n)"

@ Length of a list:

fun len :: "’a list = nat" where
"len [] = 0" | "len (x # xs) = len xs + 1"

Example: Non-Termination

Example: Non-Termination

@ This function does not terminate. It's an infinite loop.

fun bad :: "nat = nat" where
"bad x = bad x + 1"

Example: Non-Termination

@ This function does not terminate. It's an infinite loop.

fun bad :: "nat = nat" where
"bad x = bad x + 1"

@ It's rejected by Isabelle/HOL with an error message.

Example: Non-Termination

@ This function does not terminate. It's an infinite loop.

fun bad :: "nat = nat" where
"bad x = bad x + 1"

@ It's rejected by Isabelle/HOL with an error message.

@ Isabelle requires that each function terminates.

Example: Non-Termination

@ This function does not terminate. It's an infinite loop.

fun bad :: "nat = nat" where
"bad x = bad x + 1"

@ It's rejected by Isabelle/HOL with an error message.
@ Isabelle requires that each function terminates.

@ This is checked automatically.

Example: Non-Termination

@ This function does not terminate. It's an infinite loop.

fun bad :: "nat = nat" where
"bad x = bad x + 1"

@ It's rejected by Isabelle/HOL with an error message.
@ Isabelle requires that each function terminates.
@ This is checked automatically.

@ The proof is produced automatically using clever heuristics.

Examples: Recursive Functions

Examples: Recursive Functions

fun append :: "’a list = ’'a list = ’“a list"
(infixr "@" 65)
where "[] @ xs = xs" | "(x # Xxs) @ ys = x # (xs @ ys)"

Examples: Recursive Functions

fun append :: "’a list = ’'a list = ’“a list"
(infixr "@" 65)
where "[] @ xs = xs" | "(x # Xxs) @ ys = x # (xs @ ys)"

value "append ((®::nat) # 1 # []1) (2 # 3 # [1D"
(* Q#1#2#3#[]1 *)

Examples: Recursive Functions

fun append :: "’a list = ’a list = ’a list"
(infixr "@" 65)
where "[] @ xs = xs" | "(x # Xxs) @ ys = x # (xs @ ys)"

value "append ((®::nat) # 1 # []1) (2 # 3 # [1D"
(* Q#1#2#3#[]1 *)

fun rev :: "’a list = ’a list" where
"rev [] = [I" | "rev (x # xs) = rev xs @ [x]"

Examples: Recursive Functions

fun append :: "’a list = ’a list = ’a list"
(infixr "@" 65)
where "[] @ xs = xs" | "(x # Xxs) @ ys = x # (xs @ ys)"

value "append ((®::nat) # 1 # []1) (2 # 3 # [1D"
(* Q#1#2#3#[]1 *)

fun rev :: "’a list = ’a list" where
"rev [] = [I" | "rev (x # xs) = rev xs @ [x]"

value "rev ((®::nat) # 1 # 2 # 3 # [])"
(* 3#2#1#0#[] *)

Mixfix Syntax Annotation

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.
@ Any constructor, definition, or function can be given mixfix syntax.

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.
@ Any constructor, definition, or function can be given mixfix syntax.
e infix, infixl, infixr followed by a precendence; or

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.

@ Any constructor, definition, or function can be given mixfix syntax.
e infix, infixl, infixr followed by a precendence; or

@ String containing placeholder symbols (_) and precedence.

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.

@ Any constructor, definition, or function can be given mixfix syntax.
e infix, infixl, infixr followed by a precendence; or

@ String containing placeholder symbols (_) and precedence.

@ We use unicode symbols in mixfix annotation.

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.

@ Any constructor, definition, or function can be given mixfix syntax.

e infix, infixl, infixr followed by a precendence; or

@ String containing placeholder symbols (_) and precedence.

@ We use unicode symbols in mixfix annotation.

@ Mixfix can be given in the definition, or using the notation command:

fun append::"’a list='a list=’a list" (infixr "@" 65)
notation append (infixr "@" 65)

abbreviation single ("[_]") where "single x = x#[]"

Mixfix Syntax Annotation

@ Isabelle has a flexible syntax for operators, called mixfix.

@ Any constructor, definition, or function can be given mixfix syntax.

e infix, infixl, infixr followed by a precendence; or

@ String containing placeholder symbols (_) and precedence.

@ We use unicode symbols in mixfix annotation.

@ Mixfix can be given in the definition, or using the notation command:

fun append::"’a list='a list=’a list" (infixr "@" 65)
notation append (infixr "@" 65)

abbreviation single ("[_]") where "single x = x#[]"

@ Abbreviation: syntactic constant. No logical meaning (note use of =).

Higher Order Functions and Type Inference

Higher Order Functions and Type Inference
@ map: higher order function takes function argument (cf., A x. x + 1).

fun map :: "(’a = 'b) = ’a list = ’'b list" where
"map £ [] = [1" | "map f (x # xs) = f x # map f xs"

value "map (M x::nat. x + 1) (® # 1 # 2 # []1)"

(* 1#2#3#[]1 *)

Higher Order Functions and Type Inference
@ map: higher order function takes function argument (cf., A x. x + 1).
b list" where

fun map :: "('a = ’'b) = ’a list =
"map £ [] = [1" | "map f (x # xs) = f x # map f xs"

value "map (M x::nat. x + 1) (® # 1 # 2 # []1)"

(% 1#2#3#[] *)
@ The effect is to apply the argument function to every element of the list.

Higher Order Functions and Type Inference
@ map: higher order function takes function argument (cf., A x. x + 1).
fun map :: "('a = ’'b) = ’a list = ’b list" where
"map £ [] = [1" | "map f (x # xs) = f x # map f xs"
value "map (M x::nat. x + 1) (® # 1 # 2 # []1)"
(% 1#2#3#[] *)
@ The effect is to apply the argument function to every element of the list.
@ We can also partially apply map to a given function:

term "map (A X::nat. x + 1)"
(* Type: nat list = nat list ¥)

Higher Order Functions and Type Inference
@ map: higher order function takes function argument (cf., A x. x + 1).

fun map :: "('a = ’'b) = ’a list = ’b list" where
"map £ [] = [1" | "map f (x # xs) = f x # map f xs"

value "map (M x::nat. x + 1) (® # 1 # 2 # []1)"
(% 1#2#3#[] *)
@ The effect is to apply the argument function to every element of the list.
@ We can also partially apply map to a given function:
term "map (A X::nat. x + 1)"
(* Type: nat list = nat list ¥)

@ Type inference determines the type of this function using the arguments.

Higher Order Functions and Type Inference
@ map: higher order function takes function argument (cf., A x. x + 1).

fun map :: "('a = ’'b) = ’a list = ’b list" where
"map £ [] = [1" | "map f (x # xs) = f x # map f xs"

value "map (M x::nat. x + 1) (® # 1 # 2 # []1)"
(% 1#2#3#[] *)

@ The effect is to apply the argument function to every element of the list.
@ We can also partially apply map to a given function:

term "map (A X::nat. x + 1)"
(* Type: nat list = nat list ¥)

@ Type inference determines the type of this function using the arguments.
@ Here, it instantiates "a and ’b to both be nat.

Records

Records
@ Define a new record type with several typed fields:

record RT = £1::T1 £2::T2 ... fn::Tn

Records
@ Define a new record type with several typed fields:

record RT = £1::T1 £2::T2 ... fn::Tn

@ Isomorphic to a product type T; x To x - - -, but with named selectors.

Records
@ Define a new record type with several typed fields:

record RT = £1::T1 £2::T2 ... fn::Tn

@ Isomorphic to a product type T; x To x - - -, but with named selectors.
@ We can construct a record with the notation (fi = vy, = vo, - -).

Records
@ Define a new record type with several typed fields:

record RT = £1::T1 £2::T2 ... fn::Tn

@ Isomorphic to a product type T; x To x - - -, but with named selectors.
@ We can construct a record with the notation (fi = vy, = vo, - -).
@ Also support record extension (similar to inheritance).

record Person =
surname :: string
forename :: string

Records
@ Define a new record type with several typed fields:

record RT = £1::T1 £2::T2 ... fn::Tn

@ Isomorphic to a product type T; x To x - - -, but with named selectors.
@ We can construct a record with the notation (fi = vy, = vo, - -).
@ Also support record extension (similar to inheritance).

record Person =
surname :: string
forename :: string

@ Add new fields:
record Employee = Person +

ident :: nat
paygrade :: nat

Command Summary

Command Summary

@ type_synonym define a new type name as a synonym

Command Summary

@ type_synonym define a new type name as a synonym

@ definition define a simple function or constant

Command Summary

@ type_synonym define a new type name as a synonym
@ definition define a simple function or constant

@ term and value check type and evaluate a term

Command Summary

@ type_synonym define a new type name as a synonym
@ definition define a simple function or constant
@ term and value check type and evaluate a term

@ datatype define an algebraic datatype

Command Summary

@ type_synonym

@ definition

@ term and value
@ datatype

@ fun

define a new type name as a synonym
define a simple function or constant
check type and evaluate a term

define an algebraic datatype

define a recursive function

Command Summary

@ type_synonym

@ definition

@ term and value
@ datatype

o fun

@ record

define a new type name as a synonym
define a simple function or constant
check type and evaluate a term

define an algebraic datatype

define a recursive function

define a record type

Command Summary

@ type_synonym

@ definition

@ term and value
@ datatype

o fun

@ record

@ notation

define a new type name as a synonym
define a simple function or constant
check type and evaluate a term

define an algebraic datatype

define a recursive function

define a record type

assign optional syntax to a constant

Overview

6 Code Generator

Code Generation

Code Generation

@ Isabelle produces code for datatypes and functions in

Code Generation

@ Isabelle produces code for datatypes and functions in
SML, OCaml, Haskell, Scala.

Code Generation

@ Isabelle produces code for datatypes and functions in
SML, OCaml, Haskell, Scala.
@ Turns Isabelle into a verification tool for functional programs.

export_code <functions>
in <language>
module_name <name>

Code Generation

@ Isabelle produces code for datatypes and functions in
SML, OCaml, Haskell, Scala.

@ Turns Isabelle into a verification tool for functional programs.

export_code <functions>
in <language>
module_name <name>

@ This generates code for each of the functions in the target language.

Code Generation

@ Isabelle produces code for datatypes and functions in
SML, OCaml, Haskell, Scala.
@ Turns Isabelle into a verification tool for functional programs.

export_code <functions>
in <language>
module_name <name>

@ This generates code for each of the functions in the target language.

@ Also creates any requisite algebraic datatypes, etc.

Example: Isabelle/HOL — Haskell

Example: Isabelle/HOL — Haskell

export_code append in Haskell module_name List

Example: Isabelle/HOL — Haskell

export_code append in Haskell module_name List

Haskell Code

module List(List, append) where {
data List a = Nil | Cons a (List a)

append :: List a -> List a -> List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Example: Isabelle/HOL — Haskell

export_code append in Haskell module_name List

Haskell Code

module List(List, append) where {
data List a = Nil | Cons a (List a)

append :: List a -> List a -> List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

@ Code appears in a virtual file system in file browser (Output pane).

Example: Isabelle/HOL — Haskell
export_code append in Haskell module_name List

Haskell Code

module List(List, append) where {
data List a = Nil | Cons a (List a)

append :: List a -> List a -> List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

@ Code appears in a virtual file system in file browser (Output pane).
@ This code can be compiled with GHC or interpreted with GHCI.

Conclusion

Conclusion

This Lecture

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.
@ Algebraic data types and recursive functions.

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.
@ Algebraic data types and recursive functions.
@ Code generation.

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.
@ Algebraic data types and recursive functions.
@ Code generation.

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.
@ Algebraic data types and recursive functions.
@ Code generation.

Next Lecture

Conclusion

This Lecture
@ Functional programming in Isabelle/HOL.
@ Algebraic data types and recursive functions.
@ Code generation.

Next Lecture
@ How we can start to prove things about these programs.

	HOL as a Functional Programming Language
	Type System
	Algebraic Datatypes
	Recursive Functions
	Code Generator

