
1/21

Foundations of Types in Isabelle/HOL

Simon Foster Jim Woodcock
University of York

18th August 2022



2/21

Overview

1 Relationship between sets and types

2 Defining new types using subsets

3 Description operators

4 Benefits and limitations of types



3/21

Outline

1 Relationship between sets and types

2 Defining new types using subsets

3 Description operators

4 Benefits and limitations of types



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



4/21

Types as Sets

Every type T has corresponding non-empty set as its universe

UNIV :: T set

Any value x :: T is an element of the type’s universe x ∈ UNIV.

All HOL types have at least one element, hence

∃ x . x ∈ UNIV UNIV witness

Types are like maximal sets, the largest set of well-typed members.

(UNIV :: ocean set) = {Atlantic, Pacific, Indian, Arctic}.



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



5/21

Example: Equality Proofs

x ∈ A,Γ ` x ∈ B
x /∈ fv(Γ) subsetI

Γ ` A ⊆ B
Γ ` A ⊆ B Γ ` B ⊆ A

equalityI
Γ ` A = B

lemma ocean_UNIV: "UNIV = {Atlantic , Pacific, Indian, Arctic}"
proof (rule equalityI; rule subsetI)
fix x :: ocean
assume "x ∈ UNIV"
show "x ∈ {Atlantic, Pacific, Indian, Arctic}"
by (cases x; simp) (* Automate Case Analysis *)

next
fix x :: ocean
assume "x ∈ {Atlantic , Pacific, Indian, Arctic}"
show "x ∈ UNIV"
by (fact UNIV_I)

qed



6/21

Outline

1 Relationship between sets and types

2 Defining new types using subsets

3 Description operators

4 Benefits and limitations of types



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



7/21

Types Definitions
type_synonym, datatype, and record create types.

But there is a low-level mechanism.

New types can be created from a non-empty subset of an existing type.

Use the command typedef:

typedef NT = "A :: T set"by ...

Requires a proof that the provided set A is non-empty.

typedef is used internally by both datatype and record.

Generates conversion functions:

Abs NT :: T ⇒ NT

Rep NT :: NT ⇒ T.



8/21

Types Definitions Visualised

typedef NT = "A :: T set" by ...



8/21

Types Definitions Visualised

typedef NT = "A :: T set" by ...



8/21

Types Definitions Visualised

typedef NT = "A :: T set" by ...

Non-Empty
Subset (A)

Original Type (T)

New Type (NT)

Abs_NTAbs_NT

Rep_NTRep_NT



9/21

Conversion Functions
Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



9/21

Conversion Functions

typedef NT = "A :: T set" by ...

Conversion functions Abs NT :: T ⇒ NT and Rep NT :: NT ⇒ T.

They satisfy:

Abs NT (Rep NT x ) = x

x ∈ A =⇒ Rep NT (Abs NT x ) = x

Rep NT x ∈ A



10/21

Example: Definining Non-Zero Numbers (1)
Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



10/21

Example: Definining Non-Zero Numbers (1)
Example
typedef nat1 = "{x :: nat. x > 0}"
morphisms from_nat1 to_nat1
by (rule_tac x="1" in exI, simp)

Prove that {x :: nat. x > 0} is non-empty by supplying witness 1.

typedef creates from nat1 :: nat1 ⇒ nat.

That converts a non-zero nat to a nat.

And to nat1 :: nat ⇒ nat1 the does the converse, such that

x > 0 =⇒ from nat1 (to nat1 x) = x (to nat1 inverse)



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.
This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.
This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.

definition plus1 :: "nat1 ⇒ nat1 ⇒ nat1" where
"plus1 x y = to_nat1 (from_nat1 x + from_nat1 y)"

This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.

definition plus1 :: "nat1 ⇒ nat1 ⇒ nat1" where
"plus1 x y = to_nat1 (from_nat1 x + from_nat1 y)"

lemma plus1:
assumes "x > 0" "y > 0"
shows "plus1 (to_nat1 x) (to_nat1 y) = to_nat1 (x+y)"
by (simp add: assms plus1_def to_nat1_inverse)

This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.

definition plus1 :: "nat1 ⇒ nat1 ⇒ nat1" where
"plus1 x y = to_nat1 (from_nat1 x + from_nat1 y)"

lemma plus1:
assumes "x > 0" "y > 0"
shows "plus1 (to_nat1 x) (to_nat1 y) = to_nat1 (x+y)"
by (simp add: assms plus1_def to_nat1_inverse)

This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.

definition plus1 :: "nat1 ⇒ nat1 ⇒ nat1" where
"plus1 x y = to_nat1 (from_nat1 x + from_nat1 y)"

lemma plus1:
assumes "x > 0" "y > 0"
shows "plus1 (to_nat1 x) (to_nat1 y) = to_nat1 (x+y)"
by (simp add: assms plus1_def to_nat1_inverse)

This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



11/21

Example: Defining Non-Zero Numbers (2)
We can define functions on nat1 by lifting those on nat.

definition plus1 :: "nat1 ⇒ nat1 ⇒ nat1" where
"plus1 x y = to_nat1 (from_nat1 x + from_nat1 y)"

lemma plus1:
assumes "x > 0" "y > 0"
shows "plus1 (to_nat1 x) (to_nat1 y) = to_nat1 (x+y)"
by (simp add: assms plus1_def to_nat1_inverse)

This process is automated with the lifting package (out of scope).

But hold on, what is value of to nat1(0)?

This is underspecified, and so HOL assigns an arbitrary value.



12/21

Outline

1 Relationship between sets and types

2 Defining new types using subsets

3 Description operators

4 Benefits and limitations of types



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



13/21

Description Operators
No accident that types are non-empty, but an integral part of the logic.

Indefinite Description Operator
ε x :: T .P x also written as SOME x :: T .P x

Hilbert’s choice: pick a value x :: T such that P x holds.
Indefinite article in natural language: “a cat sitting on my roof”.
k , (εx . x ∈ {0, 1, 2, 3}): could be 0, 1, 2, or 3.
But we can infer general properties like k ≥ 0 and k ≤ 3.
Relies on axiom of choice: can always pick a single element from a set.
If no such x exists, return an arbitrary value of type T (e.g. ε x .False).
Uncomputable in general, e.g. what is εx :: real . x ∗ x = 2?.
Lets us deal with partiality, e.g. to nat1(0), x/0, and

√
−1 (for R).



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:
We need to show some t exists satisfying P to reason about ε.
Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:
We need to show some t exists satisfying P to reason about ε.
Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule

We need to show some t exists satisfying P to reason about ε.
Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.
Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.
Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ `∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ `∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ `∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ ` ? ∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ ` 0 ∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ ` 0 ∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



14/21

Reasoning with Indefinite Descriptions
Here’s an introduction rule for indefinite description:

Introduction Rule
Γ ` P(t) P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) someI2
Γ ` Q(ε x .P(x )))

We need to show some t exists satisfying P to reason about ε.

Example
Γ ` 0 ∈ {0, 1, 2, 3} y ∈ {0, 1, 2, 3},Γ ` y ≤ 3

Γ ` (ε x . x ∈ {0, 1, 2, 3}) ≤ 3

Very rarely need to reason about description operators directly.



15/21

Example: Indefinite Descriptions



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



15/21

Example: Indefinite Descriptions

Indefinite Description Equality Theorem (of someI)
Γ ` P(a) P(x ),Γ ` x = a

x /∈ fv(P,Γ) some equality
Γ ` (ε x .P x ) = a

Example
lemma nat_less1_0: "(SOME x :: nat. x < 1) = 0"
proof (rule some_equality)
show "(0::nat) < 1" by simp

next
fix x :: nat
assume "x < 1"
thus "x = 0" by simp

qed



16/21

Definite Descriptions
Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .

Introduction Rule



16/21

Definite Descriptions

Definite Description Operator
ι x :: T .P x also written as THE x :: T .P x

Gives the unique value x described by P .

Like definite article in natural language: “the cat sitting on my roof”.

Meaningful only when there is precisely one x satisfying P .

Introduction Rule
Γ ` P(t) P(y),Γ ` y = t P(y),Γ ` Q(y)

y /∈ fv(Γ,P ,Q) theI2
Γ ` Q(ι x .P(x )))



17/21

Outline

1 Relationship between sets and types

2 Defining new types using subsets

3 Description operators

4 Benefits and limitations of types



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



18/21

Types vs. Sets

Types and sets seem quite similar. Why have both?

’a set vs. PA, ’a × ’b vs. A × B etc.

Types resolve problems in naive set theory.

Russell’s paradox:

Let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R inconsistent!.



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R
mem Collect eq
Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R
mem Collect eq
Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R
mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R
mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}

R def
Γ ` R /∈ R

β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}

R def
Γ ` R /∈ R

β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}

R def
Γ ` R /∈ R

β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not
Γ ` ¬(R /∈ R)

mem Collect eq
Γ ` R /∈ {x | x /∈ x}

R def
Γ ` R /∈ R

β-reduction
Γ ` (λ x . x /∈ x )R

mem Collect eq
Γ ` R ∈ {x | x /∈ x}

R def
Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not

Γ ` ¬(R /∈ R)
mem Collect eq

Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not

Γ ` ¬(R /∈ R)
mem Collect eq

Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not

Γ ` ¬(R /∈ R)
mem Collect eq

Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



19/21

Russell’s Paradox (Proof Attempt)

�

Γ ` R ∈ R
not not

Γ ` ¬(R /∈ R)
mem Collect eq

Γ ` R /∈ {x | x /∈ x}
R def

Γ ` R /∈ R
β-reduction

Γ ` (λ x . x /∈ x )R
mem Collect eq

Γ ` R ∈ {x | x /∈ x}
R def

Γ ` R ∈ R



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



20/21

Types vs. Sets

Types and sets seem quite similar – why have both?

Types resolve problems in naïve set theory.

Russell’s paradox: let R = {x | x /∈ x} then R ∈ R ⇔ R /∈ R.

Excluded by HOL since x ∈ x and x /∈ x are both ill-typed.

Sets are more flexible, e.g. we can have A ∪ B and A ⊆ B

But no equivalents for types.

Type checking x :: T is decidable, but x ∈ A requires proof.

In general, types improve automation by enforcing specific patterns.

Conclusion: We need both. It takes experience to know which to use.



21/21

Conclusion

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.



21/21

Conclusion

This Lecture
Relationship between sets and types.
Defining new types using subsets.
Description operators.
Benefits and limitations of types.

Next Lecture
Automation and sledghammer.


	Relationship between sets and types
	Defining new types using subsets
	Description operators
	Benefits and limitations of types

