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Motivation
@ The simp tactic uses equations (s = t) to rewrite and simplify a goal.
@ Proof by simplification is the gold standard for efficiency and usability.
@ But it’s not always possible to prove a goal with just the simplifier.
@ Isabelle provides tactics for automating natural deduction.
@ One of the core reasoning techniques, alongside the simplifier.
@ You need to understand the use of low-level proof scripts.

Proof Script

lemma "P — (P A (P V Q)"
apply (rule conjI)
apply assumption
apply (rule disjIl)
apply assumption
done
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Proof Scripts and Tactics

@ Low-level proof language are the “machine code” for Isar.

@ Proof script: sequence of commands acting on a proof state.

@ Proof state: subgoals.

@ Subgoals: collection of hypotheses and outstanding conjectures.

@ Commands invoke proof tactics to decompose and refine the goals.

Conjecture proof
(goal) tactic(s)
.| Proof [factCli Proof | factc I Proof | ™ = No subgoals!

State

@ Proof script uses the apply keyword to execute a tactic.
@ Tactics can fail if the subgoal is in the wrong form.

@ Proof is complete once all subgoals are eliminated.

@ Script terminated with done (cf. ged).
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Proof State

@ The proof state consists of n subgoals.
@ The aim is to discharge (remove by proof) all remaining subgoals.
@ Subgoals have the form [Py; --- ; P, — Q.
@ P;---P,is a set of hypotheses — can be used to prove the subgoal.
@ Qs the conclusion of the subgoal; the thing to be proved.
@ assumes P1 ... Pn shows Q creates a single initial subgoal:
[Pi; -+ Pl = Q
@ Tactics often act on the first subgoal, but some act on all (simp_all).
@ We can manipulate a subgoal in several ways:
@ Split into several additional subgoals by introduction or elimination.
@ Manipulate the assumptions or insert further ones, e.g. from theorems.
@ Discharge trivial subgoals, e.g. True or P = P using assumption.
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Natural Deduction Rules

'-P, THP---THP,
T'FQ

@ Meaning: a proof of the conclusion Q follows from premises P; - - - P,.
o ['+ Qis asequent: valid when Q holds subject to the hypotheses in I'.

Example (Syllogism)

Socrates is a man All men are mortal
Socrates is a mortal

Two main kinds of deduction rules:
@ Introduction rules (rule tactic): backwards reasoning.
@ Elimination rules (erule tactic): forwards reasoning.
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Introduction Rules

@ Question: how do we prove the conclusion P?
@ By finding subgoals P; - - - P,, based on current subgoal’s conclusion.
@ Proof by introduction is often called backwards reasoning.

Introduction Rules
TP THQ . _
TrPAQ@ oMY T fue el
- TFQ ...
Trpyvg W8Il Frpy g disil2

v

@ Invoke introduction rules using the rule tactic, e.g. apply(rule conjI).
@ Matches subgoal’s conclusion, copies any hypotheses to new subgoals.
@ Most rules are safe introduction rules, but disjI1 and disjI2 aren’t.
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lemma "P — (P A (P V Q)"
apply (rule conjI)
(* Subgoal 1 *)
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apply (rule disjIl)
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PIFQ .~ TFP-—5Q TFQ-—P
TP —>aq " TP+ Q

iffI refl

'Et=t

lemma "P — (P A (True = True))"

apply (rule impI) (¥ P = (P A (True = True)) *)

apply (rule conjI) (* P = P and P = (True = True)) *)
apply (assumption) (* P = (True = True)) *)

apply (rule refl)

done
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Elimination Rules
@ What can we deduce from hypothesis P;? Refine a subgoal.

Elimination Rules for Propositional Calculus

POTFR PR __QUER .
PAQTLFR oM PVQTFR ]
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P—Q [P—Q Q— P]=R
R

R
P— Q g Q:>RimpE

iffE

v

@ Elimination rules use erule tactical apply (erule conjE).
@ Find first hypothesis matching first premise of elimination rule.
@ Replace subgoal with remaining premises: [P; Q] — R.
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How do we prove P A (P — Q) — Q?
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impE

Proof Script

lemma "P A (P — Q) — Q"
apply (rule impI)
apply (erule conjE)
apply (erule imp)E
(* Subgoal 1 *)
apply assumption
(* Subgoal 2 *)
apply assumption
done
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Natural Deduction in Isar

lemma "P A (P — Q) — Q"
proof (rule impI)
assume "P A (P — Q"
hence "P — Q" "P"
by (erule_tac conjE, simp_all)
thus "Q"
by (erule_tac impE, simp_all)
ged

@ Benefit of being readable without seeing the proof state.
@ A little too verbose for simple predicates.
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Automating Natural Deduction

@ Isn’t all this low level deduction too much work?
@ Fortunately, Isabelle automates natural deduction using the blast tactic.
@ Tableaux prover: represent proof tree structure.

Example

lemma "P — (P A (P V Q)" by blast
lemma "P A (P — Q) — Q" by blast

@ Blast searches proof tree using introduction and elimination rules.

@ blast intro: thms elim: thms, or [intro], [elim], and [dest].
@ Safe rules marked with “I”, e.g. [intro!].

@ Unsafe rules applied only when no alternative.

@ Blast is one-shot: all or nothing.
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Combining Deduction and Simplification with Auto

@ auto is a powerful tactic combining deduction (e.g., blast) and simp.
@ Not one-shot: applies safe rules repeatedly, simplifying if possible.

@ Won't lose information as long as the specified safe rules are truly safe.
@ General technique for breaking a complex goal into several parts.

lemma "(x::nat) =y2 — x >y A x > 0"
by (auto simp add: power2_nat_le_imp_1le)

@ There are also one-shot variants: force and fastforce.
@ auto can produce unpredictable and bizarre results.
@ Still need manual deduction to understand why automated proof fails.
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Applications

@ We looked at automating natural deduction in the propositional calculus.
@ We demonstrated a far more general technique.

@ We define bespoke logics in Isabelle and then reason about them.

@ In particular, we can program verification (e.g., Hoare logic).

@ Natural deduction is an important weapon in the proof arsenal.



Conclusion



Conclusion

This Lecture




Conclusion

This Lecture
@ Apply-style proof scripts.




Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.




Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.




Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.

Next Lecture




Conclusion

This Lecture
@ Apply-style proof scripts.
@ Natural deduction in Isabelle/HOL.
@ The classical reasoner.

Next Lecture
@ Predicate calculus (quantifiers etc.).
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