Propositional Calculus

Simon Foster & Jim Woodcock
University of York

PROF

8th December 2021

1/32

Overview

Introduction

Logical Connectives
Propositions and Truth Tables
Identities

Arguments

Summary

2/32

Outline

Introduction

3/32

Propositions and Truth Tables

» Propositional language = variables + truth-functional connectives.
» Examples: - P, PAQ, PvQ P=Q P&AQ

» Propositional variables range over truth-valued statements.

» Three semantic questions about propositions:

1. Given a truth assignment to variables: is proposition P true or false?
2. Is there a truth assignment that makes P true?
3. Which truth assignments make P true?

» Semantics: one technique to answer these questions:

» Truth tables (Peirce, 1893; Wittgenstein, 1921; Post, 1921).

4/32

Proof System

A proof system answers the following questions:
1. Which propositions must be true, for any assignment?
2. What are the laws for reasoning about propositions:
equalities and inequalities.
3. How do we reason logically?
entailment and arguments.

4. How do we write a formal proof so that it can be checked?

5/32

Propositions
Atomic propositions
» Proposition: some statement such as the following

4 is a prime number.
2 is an even integer, but 3 is not.
My program always halts, if it runs for long enough.

» Fundamental property: either true or false, but not both.

Compound propositions: fundamental property
» Truth value determined by sub-propositions and connectives.

6/32

Outline

Logical Connectives

7/32

Logical Connectives

J

negation not

conjunction and

disjunction or

implication implies

equivalence if and only if (is equivalent to)

T U < >

order of precedence
-PANQVR<Q=PAR

is equivalent to
(-P)AQ VR < (Q=(PAR)

Terminology: antecedent = consequent.

8/32

Outline

Propositions and Truth Tables

9/32

Propositions and Truth Tables
» Logical connectives construct more compound propositions.
» Connectives are functions of component truth values.
» Truth tables evaluate truth value of compound propositions.

PlQ|PAQ
1:]t t tAt=t
2: t|f f tANf=f
3: |t f fAt=f
4. f | f f FAf=f

> Answers all three semantic questions:

1. Given a truth assignment: is the proposition true or false? See rows (1)—(4).

2. Is there a truth assignment that makes it true? Yes, row (1).
3. Which truth assignments make it true? Only row (1).

10/32

Truth Tables for Propositional Connectives

-P

PlQ|P=Q

PlQ|PeQ

PlQ|PAQ

PlQ|PVvQ

11/32

Using Truth Tables: Example

» Example proposition: =(P A =Q).
» List all propositional variables.
» List all situations for propositional variables: 2% combinations, for k variables.

» Tabulate result in each situation.

P\QHﬂQ\PAﬂQ\%PAﬂQ

t t
2‘
f
t

~

~ ~h ~
~\ o~ ~x
~ ~h ~

f
t
t

12/32

Final Result

> Extract the truth table: inputs and output:

Pl Q] ~(PA-Q PlQ|P=Q
t |t t t |t t
t|f f t| f f
flt t flt t
fl|f t f|f t

» This is the same truth table as that for P = Q.
» We have formally proved the equivalence of the two propositions:

“(PA-Q) & P=Q

13/32

Tautologies and Contradictions

» Tautology:
» Contradiction:
» Contingency:

» Duality:

proposition that is true everywhere.
proposition that is false everywhere.
proposition that is neither a tautology nor a contradiction.

the negation of a contradiction is a tautology and vice versa.

14/32

Outline

Identities

15/32

Identities

Tautologies with equivalence as the main connective.

—

© VNGO RA DN~

PsPVP

PsPAP
PvQ&seQVP
PANQ&sQAP
(PVvQ)VR&PV(QVR)
(PANQ ANR&PA(QAR)
-(PVv Q)< -PA-Q
~(PANQ)< -PVv-Q

PA(QVR < (PAQ)V(PA
PV((QAR) & (PVvQ) A(PV

idempotence of v

idempotence of A

commutativity of v

commutativity of A

associativity of v

associativity of A

De Morgan’s Law (1)

De Morgan’s Law (2)

R) distributivity of A over v
R) distributivity of v over A

16/32

Identities

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

PV true < true

P A true < P

PV false & P

P A false < false

PV P < true

P A =P < false

P < —=P

(P=Q<-PVvQ
Pe@Q)e (P=Q AN Q=P
(PANQ=R < (P=(Q=R)
(P=Q N(P=-Q) < -P
(P=Q) < (-Q= —-P)

zero for v

unit for A

unit for v

zero for A
excluded middle
contradiction
double negation
implication
equivalence
exportation
absurdity
contraposition

17/32

Equational Reasoning

> As we've already seen: if P < Q, then P and Q have the same truth table.
» The fact that they have the same semantics justifies writing P = Q.
» Equivalence is transitive: (P < Q) A (Q< R) = (P < R).

» These two facts justify our presentation of equational reasoning:

(Py < Py) Py = P
A (Pg =1 Pg) = P3
- Pn—1

A (Pn*‘l <~ Pn) = Pn

18/32

Presenting Proofs using Identities

Classic equational
reasoning presentation

Width-saving
presentation

Saving even more width

‘\(P:>O)

ﬁ(ﬁP\/Q)
- PA-Q
PA=Q

- (P=Q)
~(=PVQ
-2 PA-Q
PA=-Q

- (P=0Q)
{ implication }
- (=PVQ)

{ De Morgan’s Law (1) }

== PA-Q
{ double negation }
PA-Q

implication
De Morgan’s Law (1)
double negation

implication
De Morgan’s Law (1)
double negation

19/32

Example: Using ldentities to Simplify by Hand

(P=QVP=R=(QVR) implication, twice
= (-PvQV(-=PVR=(QVR) comm, assoc, idemp V
= =-PV(QVR)=(QVR) implication
= -(=Pv(QVR)VvV(QVR) De Morgan’s Law (1)
= (——PA-(QVR)V(QVR) double negation
= (PA=(QVR)V(QVR) commutativity of v
= (QVRV(PA=(QVR) distributivity of vV over A
= (QVR VP)A((QVRV-(QVR) excluded middle
= ((QVR)VP)A true unit for A

(QVR)VP commutativity of v

= PVvV(QVR)

20/32

Example: An Absorption Law
» Consider a proposed identity: (PA-Q)v Q = PV Q.
» Do you know or are you willing to believe this identity?

> It represents a tautology. Consider the truth table:

P Q|l-Q Pr-Q (PA-QVQ|PVQ

| t

» The two sides of the equation have identical truth tables.

f
t
f
f

~ ~h ~ o~
~ ~ %
~ ~h ~ —h
~n ~ ~ —~
~ o~~~

» Therefore they are equivalent.

21/32

Algebraic proof

(PA=Q)VQ

(PA=Q)VQ

PvQ

QV (PA-Q)
(QVP)A(QV-Q)
(QV P) A true
QvP

= PvQ

commutativity of v
distributivity of vV over A
excluded middle

unit for A
commutativity of v

22/32

Logical Proofs in Software Engineering

vV V. vV vV vV vV v VvV Y

Refinement is the main development process in formal methods.

This is the verifiable transformation of one model or program into another.
An abstract specification is transformed into an executable program.
Stepwise refinement allows this process to be done in stages.

Abstract model V; is refined into concrete model M, 4.

Requirements specification — final software.

Each refinement step involves implication: S < P.

Each concrete behaviour must also be an abstract behaviour.

This is the fundamental idea in this course. Requires implication tautologies.

23/32

Inequalities

Tautologies with implication as the main connective.

1.

© ©® N o O A~ D

P=PvQ
PANQ=P
PAP=Q=Q
(P=QAN-Q=—-P
-PA(PVQ)=Q

(P=Q AN(Q=R)=(P=R)

(
(
(

P=Q
P=Q
P<Q

) =
) A
) A

(Q=R)= (P=R))
(R=S)=((PAR) = (QAYS))
(QeR) = (PR

addition

simplification

modus ponens
modus tollens
disjunctive syllogism
hypothetical syllogism
transitivity of =
coupling

transitivity of <

24/32

Implication Order on Truth Values

The contradiction “false” is a very strong constraint: it can’t be satisfied!
The tautology “frue” is very weak: it’s satisfied by any truth assignment!
Recall “P implies Q”: P = Q.

Read this as “P is stronger than (or equal to) Q".

False is stronger than true. True is weaker than false.

Each truth value is as strong as itself (reflexivity).

25/32

Ordering

>

vV Vv vV vV VY

Truth table for implication: Q

| P

Pl Q =
t t t
t f f
f t t
f f t

Is true stronger than or equal to frue? (true = true) = true yes!
Is true stronger than or equal to false? (frue = false) = false no!
Is false stronger than or equal to frue? (false = true) = true yes!
Is false stronger than or equal to false? (false = false) = true yes!
Programs are stronger (more determined) than specifications.

Spec: S = (x/ > x). Program: P = (x := x+1).

Refinement: (Vx,x" ¢ P=S). Thatis,Vx,x e X' =x+ 1= x"> x.

26/32

Outline

Arguments

27/32

Arguments

Invalid: an entailment that isn’t valid.

» Argument: chain of reasoning from premises to conclusion.

> Given a set of propositions Py, P, ..., Py: the premises.

» Logical argument leads to a valid proposition Q: the conclusion.

» Entailment: claim that premises entail conclusion: Py, P, ..., P, b Q
» Entailment Py, Ps, ..., P, = Qs either valid or invalid.

> Valid: Qs true whenever all premises Py, P, ..., P, are true.

>

»

Entailment is closely related to implication:
» Entailment is valid, except where premises are true and conclusion is false.

> Implication is true, except where antecedent is true and consequent is false.

28/32

Example

» This argument is a fallacy (it's invalid): P= Q. Q - P
» Demonstration of invalidity here follows directly from a truth table.
> Truth table involves all premises and the conclusion:
P=Q|Q|P

1: t t |t

2: f flt

3: t t|f

4. t f|f

There are two situations where the premises are both true: rows (1) and (3).

>
» Rows (2) and (4) are irrelevant (at least one false premise).

> Row (1) is a valid argument, but row (3) is an invalid argument.
>

Therefore the entailment is invalid and P = Q, Q + Pis afallacy.
29/32

Example Application

» Consider the following conjecture, for rational x:

if x> - 3xx+2<0thenx >0
» The conditional is an implication: x> — 3« x +2 < 0 = x > 0.
» |t's obvious that it's a theorem, isn’t it?

» But how will you prove it? What argument will you use?

» We show three possible arguments:

1. Assume the implication’s antecedent, then prove its consequent.

2. Take the contrapositive. Now follow argument (1).
3. Negate the conjecture, then show this is a contradiction.

30/32

Outline

Summary

31/32

Summary

Overview of the propositional calculus.

Meaning, truth tables, laws, identities, weakening, strengthening.
Writing proofs: structure with an appropriate argument and give hints.
Formal proof: every step justified by a law.

Laws from propositional calculus or from a formal theory (e.g., arithmetic).

vV vV v v v Vv

Next lecture: Natural deduction in the propositional calculus.

32/32

	Introduction
	Logical Connectives
	Propositions and Truth Tables
	Identities
	Arguments
	Summary

