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Style of formal logical argumentation on conditional tautologies: sequents.
Natural deduction: every sequent has exactly one conclusion.

A1, Ao, ..., Ay B P, where the A;'s and P are propositions and n € N,

Each sequent is inferred from sequents on earlier lines in a formal argument.
Each step appeals to a precise rule of inference.

Theorems: formulas P such that = P is the conclusion of a valid proof.

Convention: I'is a list of hypotheses. Example: I' = P.
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Inference rules

» Inferences on sequents use a system of natural deduction rules.
» A collection of sound inference rules.

Schematic example:

S - S5,

If all of the premises S; hold, then the goal T must hold: T

P THQ
TFPAQ

» Interpretation: If we have a proof of the validity of I' = P and of I' - @, then we
can infer that I' = P A Q is also valid.

> Example: conjI
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Inference rules

>

| 2

Inferences on sequents use a system of natural deduction rules.
A collection of sound inference rules.

Schematic example:

If all of the premises S; hold, then the goal T must hold: 517_,_5"
Example: L FF'D'_ P/\FC; Q conjI
Interpretation: If we have a proof of the validity of ' = P and of I' = Q, then we

can infer that I' = P A Q is also valid.

Interpretation: If we want to prove I' = P A @ then it's sufficient to prove I' - P
and I' = @ separately.
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Naming

> Most of our rules are associated with a particular connective.
» An introduction rule has the connective in the conclusion of its goal.
» An elimination rule has the connective in the hypotheses of its goal.

» Example: conjunction.
=P '@

Conjunction introduction: TEPAQ conjI
: . S P,QTHFR
C t | tion: — jE
onjunction elimination PAOTER conj
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Proof Trees

» Shows how a conclusion can be reached from a set of premises.

v

Formal proof: every step justified from basic rules.
> Example:

Q.PFQ -
Wrotate W
P.RFQAP
PANQFEQAP
FPAQ= QAP

asm

conjl

P> asm, conjI, conjE, rotate, and impI are all valid rule names properly applied.
So it's a formal proof of the theorem P A Q@ = Q A P.

» Note that complete proof trees have empty premises (leaves).

v
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The Rules of Inference

P, @, R range over propositions.
X, y,z range over fixed variables.
S, t range over terms.

f, g range over total functions.

A, B range over sets.

vV V. v v Vv Vv

Variable I' is a proof context, consisting of a sequence of propositions,
P,Q, - ,R.

> Meta-logical function fv returns the set of variables free in a term or context.
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The simplest proof rule proves a goal from the hypothesis: PITFP asm

The goal P,I' = P is replaced by the empty goal and the proof is finished.

Example

Suppose we want to prove an arbitrary proposition P.

Here's a shallow proof tree that seems to do the job: ﬁ asm
Our proof is immediate! But what have we proved?

Assuming P is true, we have proved P: thatis, P+ P.

This is not the same as proving that P is true.

P is true is a tautology. P P is a conditional tautology.
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» The proof will now follow from the fact that N C Z.
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» Structural Rule.

I PFQ
» The order of hypoth be ch d: —
€ oraer o ypotnheses can be change P’F E Q rotate

> Example:
Suppose our facts in the last example were presented in a more logical order:

Some facts about x: x € N and 0 < x < 10.

x>0,x<10,xeNFxeZ
xeENx>0,x<10Fx€eZ

rotate

» We can now proceed as we did before.

> We often need to reorder hypotheses to match inference rules.
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» For all terms s and t and any predicate P(x), we have

If s =t, then P(s) < P(t).

» This principle is captured in the logic as a proof rule: s=tTF P subst
s=t,I'F P(s)
> Example:
F2xx+1>0 thin
y=2xx+1F2%xx+1>0
subst

y=2xx+1Fy>0

» This proof illustrates another use of the thinning rule:

The final goal -2 % x + 1 > 0 doesn't mention the free variable y.
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Truth Constants

» The truth constants are true and false.
» They can both be used to complete a proof branch.
» If our goal has the conclusion true, then there is nothing left to prove:

= T I
I'F true rue

> We are trying to prove a trivial tautology, which is true for any hypothesis.
» If our goal has the hypothesis false, then there is nothing left to prove:

false. T - p [alseE

> We are trying to prove something from a contradiction, any goal now follows.

» Compare with implication: (false = P) = (Q = true) = true.
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Example: Disjunction is Commutative

» Proof:
777 - asm
PHQ RQFQ . .
disjE
PVRFQ  4igi11
PVQQFQVP
» Oh no!

» The left-hand branch is stuck: in general, we can't prove P - Q.

> What went wrong? We threw away information too early in the proof.
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Example: Disjunction is Commutative

P> Let's try again.

» Proof:
— asm ———~-asm
Prp 58 QrQ . .
— - d I2 — = d I1
PrQvp %) QFQdeE%
PVQFQVP J

» Disjunction introduction is called an unsafe rule.

» Heuristic: Apply safe rules before unsafe ones.

26/44



Theorems as Inference Rules: the Cut

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

r'-P

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

Tk P

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

Irp cut

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

QTP
Tk P

cut

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

r-Q QTUFP
Tk P

cut

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

r-Q QTUFP
Tk P

cut

» Example:

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

r-Q QTUFP
Tk P

cut

» Example:

> We want to prove - Q V P.

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

rcQ  QTIEP
TFP

cut

» Example:

> We want to prove - Q V P.

» Suppose we already have a proof of - P VvV Q.

27 /44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

rcQ  QTIEP
TFP

cut

» Example:

> We want to prove - Q V P.
» Suppose we already have a proof of - P VvV Q.

» We're almost there. If only disjunction was commutative!

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

rcQ  QTIEP
TFP

cut

> Example:

We want to prove - Q V P.
Suppose we already have a proof of H PV Q.

We're almost there. If only disjunction was commutative!

vV v v v

But we've proved that in the last example: PV Q- Q V P.

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

rcQ  QTIEP
TFP

cut

» Example:

We want to prove - Q V P.

Suppose we already have a proof of H PV Q.

>

>

» We're almost there. If only disjunction was commutative!

» But we've proved that in the last example: PV Q- Q V P.
>

How do we organise this proof?

27/44



Theorems as Inference Rules: the Cut

» Structural Rule: the cut.

rcQ  QTIEP
TFP

cut

» Example:

We want to prove - Q V P.

Suppose we already have a proof of H PV Q.

>

>

» We're almost there. If only disjunction was commutative!

» But we've proved that in the last example: PV Q- Q V P.
>

How do we organise this proof? We use the cut!

27/44



The Cut: Commutativity Example

28/44



The Cut: Commutativity Example

» Proof

28/44



The Cut: Commutativity Example

» Proof

FQV P

28/44



The Cut: Commutativity Example

» Proof

FQVP

28/44



The Cut: Commutativity Example

» Proof

cut

FQVP

28/44



The Cut: Commutativity Example

» Proof

FPVQ PVQEQVP
FQVP

cut

28/44



The Cut: Commutativity Example

» Proof

FPVQ PVQFQVP
FQVP

cut

» Our previous example proved the commutativity lemma

28/44



The Cut: Commutativity Example

» Proof

FPVQ PVQFQVP
FQVP

cut

» Our previous example proved the commutativity lemma PV QF Q V P.

28/44



The Cut: Commutativity Example

» Proof

FPVQ PVQFQVP
FQVP

cut

» Our previous example proved the commutativity lemma

» The cut justifies using this lemma as an inference rule:

PVQFQVP.

28/44



The Cut: Commutativity Example

» Proof

FPVQ PVQFQVP
FQVP

cut

» Our previous example proved the commutativity lemma

» The cut justifies using this lemma as an inference rule:

PVQRFQVP.

'-pPvaQ
'FQvP

28/44



The Cut: Commutativity Example

» Proof
~PVQ PVQFQVP
FQVP
» Qur previous example proved the commutativity lemma PV QF Q V P.
» The cut justifies using this lemma as an inference rule: ;tgi\\//g

» We can now use this rule in other proofs.

28/44



The Cut: Commutativity Example

» Proof
FPVQ P\/QI—Q\/PCut
FQVP
» Qur previous example proved the commutativity lemma PV QF Q V P.
» The cut justifies using this lemma as an inference rule: ;tgi\\//g
» We can now use this rule in other proofs.
» In general, if we have a proof of P,I' - @, then we have

28/44



The Cut: Commutativity Example

» Proof
FPVQ P\/QI—Q\/PCut
FQVP
» Qur previous example proved the commutativity lemma PV QF Q V P.
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Implication

» To prove an implication P = @, we assume P and then prove Q.

P,THQ®
'-P=Q

What if we have P = Q as a hypothesis?

» Implication introduction: impI

v

A\

Then we can replace it by Q. But we need to prove P in order to do this.

r'-P QTFR
P=QTFR

» Implication elimination was called modus ponens in antiquity.

» Implication elimination:

impE
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Example: Law of Excluded Middle

» The Law of Excluded Middle states that for every P, either P or — P is true.
» There is no third value in classical logic.

» This follows directly from the classical disjunction introduction rule.

» Proof:

asm

disjCI
disjComm

—~PF-P
F=PVP
FPV-P

» The proof tree is made smaller by using our lemma for or-commutativity.
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Soundness and Completeness
» Definition
An axiom is an inference rule with empty premises.
» Definition
A derivation is tree of propositions labelled by rule names.
» Definition
A derivation is a proof if all its leaves are axioms.
» Theorem (Soundness)
The root sequent of a proof is valid.
» Theorem (Completeness)
If a sequent is valid, then there is a proof with that sequent as root.
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» Next: Predicate calculus.
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