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Introduction

» Predicate quantifiers: extent that proposition is true over range of elements.
» Predicate = proposition with abstracted subject: P(x).
» Universal Quantification Predicate true for all the values over domain.

> Vx e P(x): states that P(x) is true for all values of x in this domain.

v

Existential Quantification Predicate true for some value of x in the domain.

> dx e P(x): states that P(x) is true for at least one value in the domain.
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Syntax

» In Z, quantifiers share a similar syntax: Ix:s| P e Q.

» T is the quantifier, x is the bound variable, and s is the range of x.

» P is the (optional) constraint and @ is the predicate.

> Two syntactic equivalences explain the constraint:
dx:s| PeQisashorthand for 3x:se P A Q
Vx:s|PeQisashorthand for Vx:se P = @Q

» dx:s| Pe @ read as “there exists an x in s satisfying P, such that Q" holds.

> Vx:s| PeQ read as “for all x in s satisfying P, Q holds".
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Bound Variables

vV v v Y

vV vy VvVYyy

Each quantifier introduces a bound variable.

Scoped, like local variables in a block-structured programming language.

Consider the quantified predicate “Vx :s| P e Q".

Bound variable scope: exactly the constraint P and predicate Q: Vx : s | io/g

scope
of x

Quantifiers take the widest possible scope, binding very loosely: Vx :se P A Q.
This means “Vx:se (P A Q)". Not “(Vx:seP)A Q"

Variables not yet bound are free. Example: x > 3 has one free variable: x.
Truth-tables are useless for quantifiers, in general.

Because bound variables can range over sets that are too large to tabulate.
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Substitution

| 2

| 4

Suppose P is a predicate containing free variable x.

“Vx:se P" asserts P is true for every x.

Specific theorems are obtained by substituting a term t for bound variable x.
P[t/x] denotes P with term t substituted for x. Read as “P with ¢ for x".

Some authors use replacement notation:

'

Remember your English grammar: Substitute new for old. Replace old by new.

Substitution also defined on terms themselves: u[t/x].
In Isabelle, we write P(x) to show that x is free for substitution in P.

Substitution is done by supplying an actual parameter: P(t).
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Substitution

» Bound variables must sometimes be renamed before substitution.

» Consider the theorem Vx:Z e dy :Z e x # y.

» True for all numbers, so why not specialise it? Is it true for y: Jy : Z e y £ y?
» Contradiction! — What's gone wrong? Free variable capture.

> Free variable y enters scope of 3y : Z e --- and becomes a bound variable.

» Change the bound variable before substitution to avoid capture:

(dy:Zex#y)ly/x] = (Fz:Zex#z)ly/x| = 3z:Zey#z
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Reasoning with Quantifiers
> Variable capture example suggests: the name of a bound variable doesn’t matter.

> Predicates that differ up to renaming of bound variables are equivalent.

dy:Zexz#y = dz:Zex#z

A\

What about other equivalences in the predicate calculus?
» Here's a simple question about two quantified predicates:
Are these two predicates equivalent?
dx:seP(x)= Q(x) 7=7 (Ix:seP(x))= (Ix:seQ(x))

> Are they equivalent? Does one imply the other? Are they at all related?

v

We need identities to reason about quantifiers to check the answer.

v

Before that, we need rules for reasoning about quantifiers.
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Reasoning with Universal Quantification

» Suppose P(x) is true for every possible value of x in s: then Vx : s e P(x).
Otherwise, Vx : s ® P(x) is false.

This gives us an argument.

Generalisation:  x €s,P(x) - Vx:s5e P(x)

This is an argument with two premises and one conclusion.

This argument is valid only if its premises are true for every x.

A new kind of restriction: the variable x must be arbitrary.

Valid: xe€Z,x+1>xF Vx:Zex+1>x

vV V.V VvV VvV VvV Vv Y

Fallacy: x€ Z,x =5+ Vx:Zex =5

11/32



Reasoning with Universal Quantification

If Vx:s e P(x) is true, then for any term t in s, P(t) will be true.
This gives us an argument.

Specialisation: Vx :s e P(x),t € s F P(t)

Example: Vx:Zex>?>0,y—1€Z F (y—12>0

vV V.V Vv V

This is another argument with two premises and one conclusion.
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Reasoning with Existential Quantification

vV v vy VvYyy

vV vyy

Suppose P(x) is true for at least one element of s:  Jx : s e P(x).
Otherwise, 9x : s ® P(x) is false.

This gives us an argument: t € s, P(t) F dx:se P(x)

Existential introduction. This hides information by giving a name to a witness.

Existential elimination: prove a predicate R from the predicate I x : s e P(x).

Show that R follows from an arbitrary element of s satisfying P.
dx:seP(x),(xes,P(x)FR)FR

Similar to generalisation (universal introduction).

Note the sub-argument x € s, P(x) = R as a premise to the overall argument.

How are existential elimination and universal introduction linked?

De Morgan's laws for quantifiers.
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De Morgan's Laws for Quantifiers: Motivation

» Can the predicate = ¥V x : N @ x > 3 be simplified? Semi-formal argument:

- Vx:Nex>3

& { universal quantification as conjunction }
“(0>3AN1>3A2>3A3>3A...)

& { by De Morgan's Law }
-(0>3)v-(1>3)v=-(2>3)v-(3>3) V...

& { existential quantification as disjunction }
Ix:Ne—(x>3)

» Motivates De Morgan's Laws for generalised conjunction and disjunction:

“(Vx:seP(x))< Ix:se-P(x) and —(Ix:seP(x)) < Vx:se- P(x)
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Example: A Classic Logic Puzzle

» Suppose that if you don’t love someone, then you hate them.
> |s there no one who loves everybody? Draw conclusions if it's true.

> Let's calculate. Let Person be the set of all people:

= dx : Person e Yy : Person e x loves y
& { by De Morgan }

V x : Person @ = YV y : Person e x loves y
& { by De Morgan }

V x : Person @ 3y : Person @ = (x loves y)
& { by definition }

V x : Person @ 3y : Person e x hates y

» So, our sentence means everybody hates someone.

16/32



Example: De Morgan for Quantifiers

>

vV V. vV VvV Vv v Y

For every pair of integers x and y, there's a z, such that x + z = y.

Formalised as: Vx:Z eVy :Zedz:Z e x+ z =y (Zis the set of integers)
Or more simply as:  Vx:Z;, y:Zedz:Zex+z=y.

Or even more simply as:  Vx,y:Zedz:Zex+z=y.

Predicate is false for all positive integers in N:  Vx,y :NeJdz:Nex+z=y.
To see this, take x = 2 and y = 1, then we must prove that 3z: Ne 2+ z =1,
Which is patently false: there is no such z. 3z: Ne z= —1.

How do we prove it's a contradiction?
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Let's Calculate

It's false. Negate the predicate and show that the result is true.

- Vx,y:Nedz:Nex+z=y
& { by De Morgan }
Ix,y:Ne—-Jdz:Nex+z=y
& { by De Morgan }
dx,y:NeVz:Ne—-(x+z=y)
& { by definition }
dx,y:NeVz:Nex+z#y

We can prove our result more easily in this form.
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Finishing it off

» So how do we prove Ix,y :NeVz:Nex+z#£y?

> Use existential introduction!

» Find values for x and y that make the following true
Vz:Nex+z#y

> |If we select 1 for x and 0 for y, we have
Vz:Nel+2z+#0

which is a property of every natural number: succ(z) # 0.
» So, given this property, we've proved that

- Vx,y:Nedz:Nex+z=y
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More on De Morgan

» What happens to the range of the bound variable? Consider the following:

-~ Vx:Nex?+x—-2>0

& {since Vx:se PisthesameasVx: X exc€s= P}
- Vx:ZexeEN=x2+x-2>0

& { by De Morgan }
Ix:Ze-~(xeEN=x2+x-2>0)

& { by propositional calculus }
Ix:ZexeNAX2+x—-2<0
& {since Ix:se PisthesameasIx: X excsAP}

Ix:Nex24+x—-2<0

> Range of the quantification remains unchanged.
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Proving and Disproving Universal Quantifications

vV V. vV vV Vv Vv Y

Proving V x : s @ P(x) can be quite demanding.

We need an argument that proves P whatever the value of x.

Not enough to give some examples of values of x that satisfy P.

Disproving V' x : s @ P(x) may be much easier.
By De Morgan, it's the same as proving Ix : s @ = P(x).
We need only a single x for which P is false.

Value for x provides a counterexample to Vx : s ® P(x).
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Example: Disproving a Universal Quantification

» Show the following statement is false
Vx:Q|x>0e(x>-3x+2>0)

Q is the rational numbers (those expressible as the ratio of two integers a/b).

> A single counterexample suffices.
» An appropriate value is % > 0.
» We have that

Gr-3:«(@+2 - -

Bl
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Moving Quantifier Scopes

Suppose our predicate is a disjunct or conjunct within a quantifier.

Suppose none of its variables are bound by the quantifier.

>
>
» Then the predicate can be pulled out of the quantifier scope.
> Let N stand for a predicate in which x doesn't occur free.

>

We have the following equivalences

Vx:seP(x)AN & (Vx:seP(x))AN
Vx:seP(x)VN & (Vx:seP(x))VN
Ix:seP(x)AN & (Ix:seP(x))AN
Ix:seP(x)VN & (Ix:seP(x))VN
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Moving Quantifiers Around

> Suppose we have a predicate that is a universally quantified conjunction.

A\

Suppose the bound variable occurs in both parts of the conjunction.
Vx:seP(x)AQ(x)

» Can we move the quantifier inwards?

A\

Distributivity laws for the quantifiers

(Vx:se P(x) AQ(x)) & (Vx:seP(x))A(Vx:seQ(x))
(Ix:seP(x)VQ(x)) & (Ix:seP(x))V(Ix:seQ(x))

» Maybe they're really associativity laws?
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Example: Distributivity

» WARNING: Universal quantification doesn't distribute over disjunction:
- <(VX :se P(x)VQ(x) & (Vx:seP(x))V (Vx:se Q(x))>

» Counterexample to distribution:
Every number is either even or odd:
Vn:Ze(nmod2=0)V (nmod2=1)
But it's false that either every number is even, or every number is odd:

(Vn:Ze(nmod2=0))V (Vn:Ze(nmod2=1))
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Example: Distributivity

» WARNING: Existential quantification doesn’t distribute over conjunction:
- <(E|X :se P(x) ANQ(x)) & (Ix:seP(x))A(Ix:se Q(x))>

» Counterexample to distribution:
There's a number that's even and there's a number that’s odd:
(3n:Ze(nmod2=0)) A (In:Ze(nmod2=1))
But there isn't a number that's both even and odd:

dn:Ze(nmod2=0)A(nmod2=1)
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Semi-distribution

» Universal quantification doesn't distribute over disjunction as an equivalence.

» But it does as an implication (strengthening):
(Vx:seP(x))V(Vx:seQ(x)) = (Vx:seP(x)V Q(x))

> Existential quantification doesn't distribute over conjunction as equivalence.

» But it does as an implication (weakening)

(Ix:se P(x) A Q(x)) = (Ix:seP(x))A(Ix:seQ(x))
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Identities and Semi-identities

1. (Vx:seP(x)
2. P(c
3. (= dx:seP(x)
4. (Vx:seP(x)
5. (- Vx:seP(x)
6. (Vx:seP(x)AN
7. (Vx:seP(x)VN
8. (Vx:seP(x))A(Vx:seQ(x)
9. (Vx:seP(x))V(Vx:seQ(x)
10. (Ix:seP(x) AN
11 (Ix:se P(x) VN
12 (Ix:se P(x) A Q(x)
13. (Ix:seP(x))V (Ix:seQ(x)

O 2 A (R A

P(c) ceEs
dx:seP(x ceEs
Vx:se— P
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(
(
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dx
dx
Y x
YV x
Vx:seP
Y x
dx
dx
dx
dx
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Example: Multiple Quantifiers

» Order of universal and existential quantifiers is significant.

> “No matter what value x in s, a value y in t can be found such that..."
Vx:sedy:te...

» Value of y may depend on value of x. Example: “there's a larger one”
Vx:NedJy:Ney>x (1)

> “There's a value y in t so that no matter what value x in s is chosen,...”
dy:teVx:se...

» Since y is bound first, y must be specified independently of x.

» “There's a number that's greater than every other number’:
Jdy:NeVx:Ney>x (2)

» Which is true and which is false?
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Summary

>

>

vV vV Vv V

v

Previously: Propositional logic: truth-valued propositions.
Truth functional connectives:

— conjunction, disjunction, negation, implication, equivalence.
First-order predicate logic adds predicates and quantification.
Predicates: parametrised propositions with abstracted subjects.
Quantifiers: universal and existential: for all ..., exists at least one ...
Quantifiers apply to variables in parametrised predicates:

— bound, free, substitution.

Rich set of algebraic laws.
Next lecture: Extending the natural deduction system to quantifiers.

32/32



	Introduction
	Reasoning with Quantifiers
	De Morgan's Laws
	Quantifier Laws
	Summary

