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Natural Deduction Rules Natural Deduction Rules

– asm
P,Γ ` P

Γ ` Q
thin

P,Γ ` Q

Γ,P ` Q
rotate

P,Γ ` Q

–
refl

Γ ` t = t

s = t,Γ ` P(t)
subst

s = t,Γ ` P(s)

Γ ` f (x) = g(x) x /∈ fv(Γ)
ext

Γ ` f = g

–
TrueI

Γ ` true
–

FalseE
false,Γ ` P

Γ ` P Γ ` Q
conjI

Γ ` P ∧ Q

P,Q,Γ ` R
conjE

P ∧ Q,Γ ` R

Γ ` P disjI1
Γ ` P ∨ Q

Γ ` Q
disjI2

Γ ` P ∨ Q

P,Γ ` R Q,Γ ` R
disjE

P ∨ Q,Γ ` R

P,Γ ` Q
impI

Γ ` P ⇒ Q

Γ ` P Q,Γ ` R
impE

P ⇒ Q,Γ ` R

Γ ` P ⇒ Q Γ ` Q ⇒ P
iffI

Γ ` P ⇔ Q

P ⇒ Q,Q ⇒ P,Γ ` R
iffE

P ⇔ Q,Γ ` R

P,Γ ` false
notI

Γ ` ¬ P

Γ ` P
notE¬ P,Γ ` R

¬ P,Γ ` false
ccontr

Γ ` P

¬ Q,Γ ` P
disjCI

Γ ` P ∨ Q 4/44
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Gentzen Sequent Calculus

I Style of formal logical argumentation on conditional tautologies: sequents.

I Natural deduction: every sequent has exactly one conclusion.

I A1,A2, . . . ,An ` P, where the Ai ’s and P are propositions and n ∈ N.

I Each sequent is inferred from sequents on earlier lines in a formal argument.

I Each step appeals to a precise rule of inference.

I Theorems: formulas P such that ` P is the conclusion of a valid proof.

I Convention: Γ is a list of hypotheses. Example: Γ ` P.
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Inference rules

I Inferences on sequents use a system of natural deduction rules.

I A collection of sound inference rules.

Schematic example:

If all of the premises Si hold, then the goal T must hold:
S1 · · · Sn

T

I Example:
Γ ` P Γ ` Q

conjI
Γ ` P ∧ Q

I Interpretation: If we have a proof of the validity of Γ ` P and of Γ ` Q, then we
can infer that Γ ` P ∧ Q is also valid.

I Interpretation: If we want to prove Γ ` P ∧ Q then it’s sufficient to prove Γ ` P
and Γ ` Q separately.
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Naming

I Most of our rules are associated with a particular connective.

I An introduction rule has the connective in the conclusion of its goal.

I An elimination rule has the connective in the hypotheses of its goal.

I Example: conjunction.

Conjunction introduction:
Γ ` P Γ ` Q

conjI
Γ ` P ∧ Q

Conjunction elimination:
P,Q,Γ ` R

conjE
P ∧ Q,Γ ` R
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Proof Trees Natural Deduction Rules

I Shows how a conclusion can be reached from a set of premises.

I Formal proof: every step justified from basic rules.

I Example:

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
P,Q ` P

conjI
P,Q ` Q ∧ P
conjE
P ∧ Q ` Q ∧ P

impI
` P ∧ Q ⇒ Q ∧ P

I asm, conjI, conjE, rotate, and impI are all valid rule names properly applied.

I So it’s a formal proof of the theorem P ∧ Q ⇒ Q ∧ P.

I Note that complete proof trees have empty premises (leaves).
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The Rules of Inference

I P, Q, R range over propositions.

I x , y , z range over fixed variables.

I s, t range over terms.

I f , g range over total functions.

I A,B range over sets.

I Variable Γ is a proof context, consisting of a sequence of propositions,
P,Q, · · · ,R.

I Meta-logical function fv returns the set of variables free in a term or context.
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Inference Rule: Assumption

I The simplest proof rule proves a goal from the hypothesis:
– asm

P,Γ ` P

I The goal P,Γ ` P is replaced by the empty goal and the proof is finished.

I Example

Suppose we want to prove an arbitrary proposition P.

Here’s a shallow proof tree that seems to do the job:
– asm

P ` P

Our proof is immediate! But what have we proved?

I Assuming P is true, we have proved P: that is, P ` P.

I This is not the same as proving that P is true.

I P is true is a tautology. P ` P is a conditional tautology.
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Manipulating Hypotheses: Thinning

I Structural Rule.

I Unnecessary hypotheses can be removed in a proof:
Γ ` Q

thin
P,Γ ` Q

I Example:

Suppose we know some facts about x : 0 ≤ x ≤ 10 and x ∈ N.

Suppose we need to prove that is an integer: x ∈ Z.

We have more hypotheses than we need:

x ∈ N ` x ∈ Z
thin
x ≤ 10, x ∈ N ` x ∈ Z

thin
x ≥ 0, x ≤ 10, x ∈ N ` x ∈ Z

I The proof will now follow from the fact that N ⊆ Z.
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Manipulating Hypotheses: Rotating

I Structural Rule.

I The order of hypotheses can be changed:
Γ,P ` Q

rotate
P,Γ ` Q

I Example:

Suppose our facts in the last example were presented in a more logical order:

Some facts about x : x ∈ N and 0 ≤ x ≤ 10.

x ≥ 0, x ≤ 10, x ∈ N ` x ∈ Z
rotate
x ∈ N, x ≥ 0, x ≤ 10 ` x ∈ Z

I We can now proceed as we did before.

I We often need to reorder hypotheses to match inference rules.
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Completing a Proof Branch

I One way of completing a branch of a proof is to use reflexivity.

I All terms t are self-identical: t = t.

I This basic rule of equality is built into the logic:
–

refl
Γ ` t = t
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Leibniz’s Rule

I Leibniz’s rule is substitution of equals for equals.

I For all terms s and t and any predicate P(x), we have

If s = t, then P(s)⇔ P(t).

I This principle is captured in the logic as a proof rule:
s = t,Γ ` P(t)

subst
s = t,Γ ` P(s)

I Example:

` 2 ∗ x + 1 > 0
thin
y = 2 ∗ x + 1 ` 2 ∗ x + 1 > 0
subst

y = 2 ∗ x + 1 ` y > 0

I This proof illustrates another use of the thinning rule:

The final goal ` 2 ∗ x + 1 > 0 doesn’t mention the free variable y .
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Truth Constants

I The truth constants are true and false.

I They can both be used to complete a proof branch.

I If our goal has the conclusion true, then there is nothing left to prove:

–
TrueI

Γ ` true

I We are trying to prove a trivial tautology, which is true for any hypothesis.

I If our goal has the hypothesis false, then there is nothing left to prove:

–
FalseE

false,Γ ` P

I We are trying to prove something from a contradiction, any goal now follows.

I Compare with implication: (false ⇒ P) = (Q ⇒ true) = true.
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Conjunction

I As we have already seen, conjunction has two rules of reasoning.

I Conjunction introduction: conjuncts can be proved separately:

Γ ` P Γ ` Q
conjI

Γ ` P ∧ Q

I Conjunction elimination: conjuncts in an antecedent can be used separately

P,Q,Γ ` R
conjE

P ∧ Q,Γ ` R
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Example: Conjunction is Associative Natural Deduction Rules

–asm
P,Q,R ` P
rotate
R,P,Q ` P
rotate
Q,R,P ` P

–asm
Q,R,P ` Q

conjI
Q,R,P ` P ∧ Q

–asm
R,P,Q ` R
rotate
Q,R,P ` R

conjI
Q,R,P ` (P ∧ Q) ∧ R
conjE
Q ∧ R,P ` (P ∧ Q) ∧ R
rotate
P,Q ∧ R ` (P ∧ Q) ∧ R

conjE
P ∧ (Q ∧ R) ` (P ∧ Q) ∧ R
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Example: Conjunction is Associative: Longer Proof Natural Deduction Rules
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Disjunction

I Disjunction introduction

To prove P ∨ Q we need to prove either P or Q:

Γ ` P disjI1
Γ ` P ∨ Q

Γ ` Q
disjI2

Γ ` P ∨ Q

I Disjunction elimination

If one of our hypotheses is a disjunction, then we proceed by case analysis:

P,Γ ` R Q,Γ ` R
disjE

P ∨ Q,Γ ` R
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Example: Case Analysis Natural Deduction Rules

I Suppose we have an assumption that (x = a) ∨ (x = b) in our proof of P(x).

I This suggests proceeding by case analysis:

` P(a)
thin
x = a ` P(a)
subst
x = a ` P(x)

` P(b)
thin
x = b ` P(b)
subst
x = b ` P(x)

disjE
(x = a) ∨ (x = b) ` P(x)
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Example: Disjunction is Commutative Natural Deduction Rules

I Proof:

???
P ` Q

–asm
Q ` Q

disjE
P ∨ Q ` Q

disjI1
P ∨ Q ` Q ∨ P

I Oh no!

I The left-hand branch is stuck: in general, we can’t prove P ` Q.

I What went wrong? We threw away information too early in the proof.
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Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

–asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` PdisjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
–asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
– asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
– asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
– asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
– asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Example: Disjunction is Commutative Natural Deduction Rules

I Let’s try again.

I Proof:
– asm

P ` P disjI2
P ` Q ∨ P

– asm
Q ` Q

disjI1
Q ` Q ∨ P

disjE
P ∨ Q ` Q ∨ P

I Disjunction introduction is called an unsafe rule.

I Heuristic: Apply safe rules before unsafe ones.

26/44



Theorems as Inference Rules: the Cut

I Structural Rule: the cut.

Γ ` Q Q,Γ ` P
cut

Γ ` P

I Example:

I We want to prove ` Q ∨ P.

I Suppose we already have a proof of ` P ∨ Q.

I We’re almost there. If only disjunction was commutative!

I But we’ve proved that in the last example: P ∨ Q ` Q ∨ P.

I How do we organise this proof? We use the cut!
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The Cut: Commutativity Example

I Proof

` P ∨ Q P ∨ Q ` Q ∨ P
cut ` Q ∨ P

I Our previous example proved the commutativity lemma P ∨ Q ` Q ∨ P.

I The cut justifies using this lemma as an inference rule:
Γ ` P ∨ Q

Γ ` Q ∨ P
I We can now use this rule in other proofs.

I In general, if we have a proof of P,Γ ` Q, then we have Γ ` P
Γ ` Q
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Implication

I To prove an implication P ⇒ Q, we assume P and then prove Q.

I Implication introduction:
P,Γ ` Q

impI
Γ ` P ⇒ Q

I What if we have P ⇒ Q as a hypothesis?

I Then we can replace it by Q. But we need to prove P in order to do this.

I Implication elimination:
Γ ` P Q,Γ ` R

impE
P ⇒ Q,Γ ` R

I Implication elimination was called modus ponens in antiquity.
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Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R
rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R
rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

–asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

– asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

– asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate
Q,P ` P

– asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

– asm
R,Q,P ` R

impE
P ∧ Q ⇒ R,Q,P ` R

rotate
P,P ∧ Q ⇒ R,Q ` R

rotate
Q,P,P ∧ Q ⇒ R ` R

impI
P,P ∧ Q ⇒ R ` Q ⇒ R

impI
P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)

impI
` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
–asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
– asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
– asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example Natural Deduction Rules

I The proposition

(P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))

is a theorem of our natural deduction system.

I Proof:
– asm

P,Q ` P
rotate

Q,P ` P
– asm

Q,P ` Q
conjI

Q,P ` P ∧ Q
– asm

R,Q,P ` R
impE

P ∧ Q ⇒ R,Q,P ` R
rotate

P,P ∧ Q ⇒ R,Q ` R
rotate

Q,P,P ∧ Q ⇒ R ` R
impI

P,P ∧ Q ⇒ R ` Q ⇒ R
impI

P ∧ Q ⇒ R ` P ⇒ (Q ⇒ R)
impI

` (P ∧ Q ⇒ R)⇒ (P ⇒ (Q ⇒ R))
31/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R
rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R
rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

–asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q
rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

–asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P
rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

–asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

– asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

– asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
R,P,Q ` R

impE
Q ⇒ R,P,Q ` R

rotate
Q,Q ⇒ R,P ` R

impE
P ⇒ Q,Q ⇒ R,P ` R

conjE
(P ⇒ Q) ∧ (Q ⇒ R),P ` R

rotate
P, (P ⇒ Q) ∧ (Q ⇒ R) ` R

impI
(P ⇒ Q) ∧ (Q ⇒ R) ` P ⇒ R

impI
` (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R)

32/44



Example: Implication is Transitive Natural Deduction Rules

I We want to prove: (P ⇒ Q) ∧ (Q ⇒ R)⇒ (P ⇒ R).

I Proof:

– asm
P,Q ⇒ R ` P

rotate
Q ⇒ R,P ` P

– asm
Q,P ` Q

rotate
P,Q ` Q

– asm
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impE
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Equivalence

I The equivalence P ⇔ Q is the bi-implication (P ⇒ Q) ∧ (Q ⇒ P).

I This explains the two proof rules, which are related to those for conjunction:

Γ ` P ⇒ Q Γ ` Q ⇒ P
iffI

Γ ` P ⇔ Q
P ⇒ Q,Q ⇒ P,Γ ` R

iffE
P ⇔ Q,Γ ` R
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Example: Rule of Subsumption Natural Deduction Rules

–asm
P,Q,P ⇒ Q ` P
conjE
P ∧ Q,P ⇒ Q ` P

impI
P ⇒ Q ` P ∧ Q ⇒ P

–asm
P ` P

–asm
P,Q ` P
rotate
Q,P ` P

–asm
Q,P ` Q

conjI
Q,P ` P ∧ Q

impE
P ⇒ Q,P ` P ∧ Q
rotate
P,P ⇒ Q ` P ∧ Q

impI
P ⇒ Q ` P ⇒ P ∧ Q

iffI
P ⇒ Q ` P ∧ Q ⇔ P
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Negation

I The rule for negation introduction is used to prove Γ ` ¬ P.

I The proof proceeds by assuming P and then showing a contradiction:

P,Γ ` false
notI

Γ ` ¬ P

I The rule for classical contradiction mirrors this and is used to prove Γ ` P.

I The proof proceeds by assuming ¬ P and then showing a contradiction:

¬ P,Γ ` false
ccontr

Γ ` P

I Negation elimination is used with a hypothesis ¬ P.

I The proof proceeds by proving the contradiction P:

Γ ` P
notE¬ P,Γ ` R
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Example: Proof with Negation Natural Deduction Rules

I Consider the sequent ¬ (P ∨ Q) ` ¬ Q.

I We can use the negation introduction and elimination rules to prove this.

I Proof:

–asm
Q ` Q

disjI2
Q ` P ∨ Q

notE¬ (P ∨ Q),Q ` false
rotate
Q,¬ (P ∨ Q) ` false
notI¬ (P ∨ Q) ` ¬ Q

I We can use this argument twice to prove one of De Morgan’s Laws.
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Example: De Morgan’s Law Natural Deduction Rules

–asm
P ` PdisjI1

P ` P ∨ Q
notE¬ (P ∨ Q),P ` false
rotate
P,¬ (P ∨ Q) ` false
notI¬ (P ∨ Q) ` ¬ P

–asm
Q ` Q

disjI2
Q ` P ∨ Q

notE¬ (P ∨ Q),Q ` false
rotate
Q,¬ (P ∨ Q) ` false
notI¬ (P ∨ Q) ` ¬ Q

conjI
¬ (P ∨ Q) ` ¬ P ∧ ¬ Q
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A Classical Or-Introduction Rule

I The following disjunction rule is safe:

¬Q,Γ ` P
disjCI

Γ ` P ∨ Q
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Example: Law of Excluded Middle Natural Deduction Rules

I The Law of Excluded Middle states that for every P, either P or ¬ P is true.

I There is no third value in classical logic.

I This follows directly from the classical disjunction introduction rule.

I Proof:

–asm
¬ P ` ¬ PdisjCI
` ¬ P ∨ PdisjComm
` P ∨ ¬ P

I The proof tree is made smaller by using our lemma for or-commutativity.
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Soundness and Completeness

I Definition

An axiom is an inference rule with empty premises.

I Definition

A derivation is tree of propositions labelled by rule names.

I Definition

A derivation is a proof if all its leaves are axioms.

I Theorem (Soundness)

The root sequent of a proof is valid.

I Theorem (Completeness)

If a sequent is valid, then there is a proof with that sequent as root.
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Summary

I We presented the Natural Deduction Laws for propositions.

I Sound and complete system for reasoning about propositional calculus.

I Structural rules and introduction and elimination rules for each propositional
operator.

I Next: Predicate calculus.
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