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Introduction

I Predicate quantifiers: extent that proposition is true over range of elements.

I Predicate = proposition with abstracted subject: P(x).

I Universal Quantification Predicate true for all the values over domain.

I ∀ x • P(x): states that P(x) is true for all values of x in this domain.

I Existential Quantification Predicate true for some value of x in the domain.

I ∃ x • P(x): states that P(x) is true for at least one value in the domain.

4/32



Syntax

I In Z, quantifiers share a similar syntax: ∃ x : s | P • Q.

I ∃ is the quantifier, x is the bound variable, and s is the range of x .

I P is the (optional) constraint and Q is the predicate.

I Two syntactic equivalences explain the constraint:

∃ x : s | P • Q is a shorthand for ∃ x : s • P ∧ Q

∀ x : s | P • Q is a shorthand for ∀ x : s • P ⇒ Q

I ∃ x : s | P • Q read as “there exists an x in s satisfying P , such that Q” holds.

I ∀ x : s | P • Q read as “for all x in s satisfying P , Q holds”.
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Bound Variables

I Each quantifier introduces a bound variable.

I Scoped, like local variables in a block-structured programming language.

I Consider the quantified predicate “∀ x : s | P • Q ”.

I Bound variable scope: exactly the constraint P and predicate Q: ∀ x : s | P • Q︸ ︷︷ ︸
scope
of x

.

I Quantifiers take the widest possible scope, binding very loosely: ∀ x : s • P ∧ Q.

I This means “∀ x : s • (P ∧ Q)”. Not “(∀ x : s • P) ∧ Q”.

I Variables not yet bound are free. Example: x > 3 has one free variable: x .

I Truth-tables are useless for quantifiers, in general.

I Because bound variables can range over sets that are too large to tabulate.
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Substitution
I Suppose P is a predicate containing free variable x .

I “∀ x : s • P”: asserts P is true for every x .

I Specific theorems are obtained by substituting a term t for bound variable x .

I P[t/x ] denotes P with term t substituted for x . Read as “P with t for x”.

Some authors use replacement notation: P[x\t], P[x := t].

Remember your English grammar: Substitute new for old. Replace old by new.

I Substitution also defined on terms themselves: u[t/x ].

I In Isabelle, we write P(x) to show that x is free for substitution in P .

I Substitution is done by supplying an actual parameter: P(t).
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Substitution

I Bound variables must sometimes be renamed before substitution.

I Consider the theorem ∀ x : Z • ∃ y : Z • x 6= y .

I True for all numbers, so why not specialise it? Is it true for y : ∃ y : Z • y 6= y?

I Contradiction! — What’s gone wrong? Free variable capture.

I Free variable y enters scope of ∃ y : Z • · · · and becomes a bound variable.

I Change the bound variable before substitution to avoid capture:

( ∃ y : Z • x 6= y )[y/x ] = ( ∃ z : Z • x 6= z )[y/x ] = ∃ z : Z • y 6= z
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Reasoning with Quantifiers
I Variable capture example suggests: the name of a bound variable doesn’t matter.

I Predicates that differ up to renaming of bound variables are equivalent.

∃ y : Z • x 6= y = ∃ z : Z • x 6= z

I What about other equivalences in the predicate calculus?

I Here’s a simple question about two quantified predicates:

Are these two predicates equivalent?

∃ x : s • P(x)⇒ Q(x) ?=? (∃ x : s • P(x))⇒ (∃ x : s • Q(x))

I Are they equivalent? Does one imply the other? Are they at all related?

I We need identities to reason about quantifiers to check the answer.

I Before that, we need rules for reasoning about quantifiers.
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Reasoning with Universal Quantification

I Suppose P(x) is true for every possible value of x in s: then ∀ x : s • P(x).

I Otherwise, ∀ x : s • P(x) is false.

I This gives us an argument.

I Generalisation: x ∈ s,P(x) ` ∀ x : s • P(x)

I This is an argument with two premises and one conclusion.

I This argument is valid only if its premises are true for every x .

I A new kind of restriction: the variable x must be arbitrary.

I Valid: x ∈ Z, x + 1 > x ` ∀ x : Z • x + 1 > x

I Fallacy: x ∈ Z, x = 5 ` ∀ x : Z • x = 5
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Reasoning with Universal Quantification

I If ∀ x : s • P(x) is true, then for any term t in s, P(t) will be true.

I This gives us an argument.

I Specialisation: ∀ x : s • P(x), t ∈ s ` P(t)

I Example: ∀ x : Z • x2 ≥ 0, y − 1 ∈ Z ` (y − 1)2 ≥ 0

I This is another argument with two premises and one conclusion.
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Reasoning with Existential Quantification

I Suppose P(x) is true for at least one element of s: ∃ x : s • P(x).
I Otherwise, ∃ x : s • P(x) is false.
I This gives us an argument: t ∈ s,P(t) ` ∃ x : s • P(x)
I Existential introduction. This hides information by giving a name to a witness.

I Existential elimination: prove a predicate R from the predicate ∃ x : s • P(x).
I Show that R follows from an arbitrary element of s satisfying P .

∃ x : s • P(x), (x ∈ s,P(x) ` R) ` R

I Similar to generalisation (universal introduction).

I Note the sub-argument x ∈ s,P(x) ` R as a premise to the overall argument.

I How are existential elimination and universal introduction linked?

I De Morgan’s laws for quantifiers.
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De Morgan’s Laws for Quantifiers: Motivation

I Can the predicate ¬ ∀ x : N • x > 3 be simplified? Semi-formal argument:

¬ ∀ x : N • x > 3

⇔ { universal quantification as conjunction }
¬ (0 > 3 ∧ 1 > 3 ∧ 2 > 3 ∧ 3 > 3 ∧ . . .)

⇔ { by De Morgan’s Law }
¬ (0 > 3) ∨ ¬ (1 > 3) ∨ ¬ (2 > 3) ∨ ¬ (3 > 3) ∨ . . .

⇔ { existential quantification as disjunction }
∃ x : N • ¬ (x > 3)

I Motivates De Morgan’s Laws for generalised conjunction and disjunction:

¬ (∀ x : s • P(x))⇔ ∃ x : s • ¬ P(x) and ¬ (∃ x : s • P(x))⇔ ∀ x : s • ¬ P(x)
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Example: A Classic Logic Puzzle
I Suppose that if you don’t love someone, then you hate them.

I Is there no one who loves everybody? Draw conclusions if it’s true.

I Let’s calculate. Let Person be the set of all people:

¬ ∃ x : Person • ∀ y : Person • x loves y
⇔ { by De Morgan }

∀ x : Person • ¬ ∀ y : Person • x loves y
⇔ { by De Morgan }

∀ x : Person • ∃ y : Person • ¬ (x loves y)

⇔ { by definition }
∀ x : Person • ∃ y : Person • x hates y

I So, our sentence means everybody hates someone.
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Example: De Morgan for Quantifiers

I For every pair of integers x and y , there’s a z , such that x + z = y .

I Formalised as: ∀ x : Z • ∀ y : Z • ∃ z : Z • x + z = y (Z is the set of integers)

I Or more simply as: ∀ x : Z; y : Z • ∃ z : Z • x + z = y .

I Or even more simply as: ∀ x , y : Z • ∃ z : Z • x + z = y .

I Predicate is false for all positive integers in N: ∀ x , y : N • ∃ z : N • x + z = y .

I To see this, take x = 2 and y = 1, then we must prove that ∃ z : N • 2+ z = 1.

I Which is patently false: there is no such z . ∃ z : N • z = −1.

I How do we prove it’s a contradiction?

17/32



Let’s Calculate

It’s false. Negate the predicate and show that the result is true.

¬ ∀ x , y : N • ∃ z : N • x + z = y

⇔ { by De Morgan }
∃ x , y : N • ¬ ∃ z : N • x + z = y

⇔ { by De Morgan }
∃ x , y : N • ∀ z : N • ¬ (x + z = y)

⇔ { by definition }
∃ x , y : N • ∀ z : N • x + z 6= y

We can prove our result more easily in this form.
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Finishing it off

I So how do we prove ∃ x , y : N • ∀ z : N • x + z 6= y?

I Use existential introduction!

I Find values for x and y that make the following true

∀ z : N • x + z 6= y

I If we select 1 for x and 0 for y , we have

∀ z : N • 1+ z 6= 0

which is a property of every natural number: succ(z) 6= 0.

I So, given this property, we’ve proved that

¬ ∀ x , y : N • ∃ z : N • x + z = y
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More on De Morgan
I What happens to the range of the bound variable? Consider the following:

¬ ∀ x : N • x2 + x − 2 > 0

⇔ { since ∀ x : s • P is the same as ∀ x : X • x ∈ s ⇒ P }
¬ ∀ x : Z • x ∈ N⇒ x2 + x − 2 > 0

⇔ { by De Morgan }
∃ x : Z • ¬ (x ∈ N⇒ x2 + x − 2 > 0)

⇔ { by propositional calculus }
∃ x : Z • x ∈ N ∧ x2 + x − 2 ≤ 0

⇔ { since ∃ x : s • P is the same as ∃ x : X • x ∈ s ∧ P }
∃ x : N • x2 + x − 2 ≤ 0

I Range of the quantification remains unchanged.
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Proving and Disproving Universal Quantifications

I Proving ∀ x : s • P(x) can be quite demanding.

I We need an argument that proves P whatever the value of x .

I Not enough to give some examples of values of x that satisfy P .

I Disproving ∀ x : s • P(x) may be much easier.

I By De Morgan, it’s the same as proving ∃ x : s • ¬ P(x).

I We need only a single x for which P is false.

I Value for x provides a counterexample to ∀ x : s • P(x).
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Example: Disproving a Universal Quantification

I Show the following statement is false

∀ x : Q | x > 0 • (x2 − 3x + 2 ≥ 0)

Q is the rational numbers (those expressible as the ratio of two integers a/b).

I A single counterexample suffices.

I An appropriate value is 3
2 > 0.

I We have that

(3
2)

2 − 3 ∗ (3
2) + 2 = −1

4 < 0
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Moving Quantifier Scopes

I Suppose our predicate is a disjunct or conjunct within a quantifier.

I Suppose none of its variables are bound by the quantifier.

I Then the predicate can be pulled out of the quantifier scope.

I Let N stand for a predicate in which x doesn’t occur free.

I We have the following equivalences

∀ x : s • P(x) ∧ N ⇔
(
∀ x : s • P(x)

)
∧ N

∀ x : s • P(x) ∨ N ⇔
(
∀ x : s • P(x)

)
∨ N

∃ x : s • P(x) ∧ N ⇔
(
∃ x : s • P(x)

)
∧ N

∃ x : s • P(x) ∨ N ⇔
(
∃ x : s • P(x)

)
∨ N
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Moving Quantifiers Around

I Suppose we have a predicate that is a universally quantified conjunction.

I Suppose the bound variable occurs in both parts of the conjunction.

∀ x : s • P(x) ∧ Q(x)

I Can we move the quantifier inwards?

I Distributivity laws for the quantifiers

(∀ x : s • P(x) ∧ Q(x)) ⇔ (∀ x : s • P(x)) ∧ (∀ x : s • Q(x))

(∃ x : s • P(x) ∨ Q(x)) ⇔ (∃ x : s • P(x)) ∨ (∃ x : s • Q(x))

I Maybe they’re really associativity laws?
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Example: Distributivity

I WARNING: Universal quantification doesn’t distribute over disjunction:

¬
((
∀ x : s • P(x) ∨ Q(x)

)
⇔

(
∀ x : s • P(x)

)
∨
(
∀ x : s • Q(x)

))
I Counterexample to distribution:

Every number is either even or odd:

∀ n : Z • (n mod 2 = 0) ∨ (n mod 2 = 1)

But it’s false that either every number is even, or every number is odd:(
∀ n : Z • (n mod 2 = 0)

)
∨
(
∀ n : Z • (n mod 2 = 1)

)
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Example: Distributivity

I WARNING: Existential quantification doesn’t distribute over conjunction:

¬
((
∃ x : s • P(x) ∧ Q(x)

)
⇔

(
∃ x : s • P(x)

)
∧
(
∃ x : s • Q(x)

))
I Counterexample to distribution:

There’s a number that’s even and there’s a number that’s odd:(
∃ n : Z • (n mod 2 = 0)

)
∧
(
∃ n : Z • (n mod 2 = 1)

)
But there isn’t a number that’s both even and odd:

∃ n : Z • (n mod 2 = 0) ∧ (n mod 2 = 1)
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Semi-distribution

I Universal quantification doesn’t distribute over disjunction as an equivalence.

I But it does as an implication (strengthening):(
∀ x : s • P(x)

)
∨
(
∀ x : s • Q(x)

)
⇒

(
∀ x : s • P(x) ∨ Q(x)

)
I Existential quantification doesn’t distribute over conjunction as equivalence.

I But it does as an implication (weakening)(
∃ x : s • P(x) ∧ Q(x)

)
⇒

(
∃ x : s • P(x)

)
∧
(
∃ x : s • Q(x)

)
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Identities and Semi-identities

1. (∀ x : s • P(x)) ⇒ P(c) c ∈ s

2. P(c) ⇒ (∃ x : s • P(x)) c ∈ s

3. (¬ ∃ x : s • P(x)) ⇔ (∀ x : s • ¬ P(x))

4. (∀ x : s • P(x)) ⇒ (∃ x : s • P(x))
5. (¬ ∀ x : s • P(x)) ⇔ (∃ x : s • ¬ P(x))

6. (∀ x : s • P(x) ∧ N) ⇔ (∀ x : s • P(x)) ∧ N

7. (∀ x : s • P(x) ∨ N) ⇔ (∀ x : s • P(x)) ∨ N

8. (∀ x : s • P(x)) ∧ (∀ x : s • Q(x)) ⇔ (∀ x : s • P(x) ∧ Q(x))

9. (∀ x : s • P(x)) ∨ (∀ x : s • Q(x)) ⇒ (∀ x : s • P(x) ∨ Q(x))

10. (∃ x : s • P(x) ∧ N) ⇔ (∃ x : s • P(x)) ∧ N

11. (∃ x : s • P(x) ∨ N) ⇔ (∃ x : s • P(x)) ∨ N

12. (∃ x : s • P(x) ∧ Q(x)) ⇒ (∃ x : s • P(x)) ∧ (∃ x : s • Q(x))

13. (∃ x : s • P(x)) ∨ (∃ x : s • Q(x)) ⇔ (∃ x : s • P(x) ∨ Q(x))
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Example: Multiple Quantifiers

I Order of universal and existential quantifiers is significant.

I “No matter what value x in s, a value y in t can be found such that. . . ”

∀ x : s • ∃ y : t • . . .
I Value of y may depend on value of x . Example: “there’s a larger one”

∀ x : N • ∃ y : N • y > x (1)

I “There’s a value y in t so that no matter what value x in s is chosen,. . . ”

∃ y : t • ∀ x : s • . . .
I Since y is bound first, y must be specified independently of x .

I “There’s a number that’s greater than every other number”:

∃ y : N • ∀ x : N • y > x (2)

I Which is true and which is false?
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Summary
I Previously: Propositional logic: truth-valued propositions.

I Truth functional connectives:

– conjunction, disjunction, negation, implication, equivalence.

I First-order predicate logic adds predicates and quantification.

I Predicates: parametrised propositions with abstracted subjects.

I Quantifiers: universal and existential: for all . . . , exists at least one . . .

I Quantifiers apply to variables in parametrised predicates:

– bound, free, substitution.

I Rich set of algebraic laws.

I Next lecture: Extending the natural deduction system to quantifiers.
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